208 research outputs found

    Evaluation of Cover and Reflector in Receiver Antennas for SM-MIMO Wireless Communications

    Get PDF

    Enhancing wireless communication system performance through modified indoor environments

    Get PDF
    This thesis reports the methods, the deployment strategies and the resulting system performance improvement of in-building environmental modification. With the increasing use of mobile computing devices such as PDAs, laptops, and the expansion of wireless local area networks (WLANs), there is growing interest in increasing productivity and efficiency through enhancing received signal power. This thesis proposes the deployment of waveguides consisting of frequency selective surfaces (FSSs) in indoor wireless environments and investigates their effect on radio wave propagation. The received power of the obstructed (OBS) path is attenuated significantly as compared with that of the line of sight (LOS) path, thereby requiring an additional link budget margin as well as increased battery power drain. In this thesis, the use of an innovative model is also presented to selectively enhance radio propagation in indoor areas under OBS conditions by reflecting the channel radio signals into areas of interest in order to avoid significant propagation loss. An FSS is a surface which exhibits reflection and/or transmission properties as a function of frequency. An FSS with a pass band frequency response was applied to an ordinary or modified wall as a wallpaper to transform the wall into a frequency selective (FS) wall (FS-WALL) or frequency selective modified wall (FS-MWALL). Measurements have shown that the innovative model prototype can enhance 2.4GHz (IEEE 802.11b/g/n) transmissions in addition to the unmodified wall, whereas other radio services, such as cellular telephony at 1.8GHz, have other routes to penetrate or escape. The FSS performance has been examined intensely by both equivalent circuit modelling, simulation, and practical measurements. Factors that influence FSS performance such as the FSS element dimensions, element conductivities, dielectric substrates adjacent to the FSS, and signal incident angles, were investigated. By keeping the elements small and densely packed, a largely angle-insensitive FSS was developed as a promising prototype for FSS wallpaper. Accordingly, the resultant can be modelled by cascading the effects of the FSS wallpaper and the ordinary wall (FSWALL) or modified wall (FS-MWALL). Good agreement between the modelled, simulated, and the measured results was observed. Finally, a small-scale indoor environment has been constructed and measured in a half-wave chamber and free space measurements in order to practically verify this approach and through the usage of the deterministic ray tracing technique. An initial investigation showing that the use of an innovative model can increase capacity in MIMO systems. This can be explained by the presence of strong multipath components which give rise to a low correlated Rayleigh Channel. This research work has linked the fields of antenna design, communication systems, and building architecture

    Verification of the Random Line-of-Sight Measurement Setup at 1.5-3 GHz including MIMO Throughput Measurements of a Complete Vehicle

    Get PDF
    The performance evaluation of wireless systems is crucial for the development of future systems with more connected devices. It is essential to have an easy and relevant method for ensuring the wireless communication performance of the devices. We have recently developed a new random line-of-sight (random-LOS) measurement system for evaluating the communication performance of wireless devices, e.g., transceivers and antennas installed on a vehicle. In the measurement system, a plane wave is generated in the test zone emulating the far-field wave transmitted from a radio base station. In this paper we present both numerical simulations and actual experimental results of the random-LOS over-the-air (OTA) measurement setup operating in the 1.5-3 GHz band. The measurement accuracy is determined by the field variations within the test zone, where a smaller variation gives better measurement accuracy. In this paper the achieved accuracy expressed in terms of standard deviation (STD) was evaluated to be approximately 1 dB of the power within a cylindrical test zone of height 0.4 m and diameter 2 m. The active multiple-input multiple-output (MIMO) performance of antenna systems installed on an actual vehicle was measured and evaluated using the presented setup. A comparison to a theoretical zero forcing (ZF) receiver is also presented

    5G RAN architecture based on analog radio-over-fiber fronthaul over UDWDM-PON and phased array fed reflector antennas

    Get PDF
    This manuscript introduces a 5G radio access network architecture concept based on ultra-dense wavelength division multiplexing (UDWDM) and incorporating an optical fronthaul network that uses a novel wireless antenna system for radio frequency transmission and reception. A ring topology is proposed where optical signals travel within the 5G UDWDM passive optical networks and millimeter waves are generated in the optical line terminals by optical heterodyning. The wireless transmission of the millimeter waves is conducted by an innovative phased array fed reflector antenna approach for mobile communications that grants high antenna gain due to highly focused radiation characteristics, as well as multiplexing gain by multiple beam generation. Furthermore, beam steering is provided by a radio frequency analog beamformer network. Finally, implementation options synthesizing the total system are discussed

    Mutual Coupling Considerations in the Development of Multi-feed Antenna Systems

    Get PDF
    In the design of any multi-port network with more than one antenna, mutual coupling between these different ports must be accounted for. In an effort to investigate and control these mutual coupling effects, we have selected three structures to be thoroughly analyzed. Furthermore, they have been fabricated and tested to develop relevant design guides for these selected structures to have minimal mutual coupling effects. These selected structures included a feed network for a multi-port antenna, a dual feedhorn for a large reflector antenna, as well as a set of Multi- Input Multi-Output (MIMO) laptop antennas. In the first study, we analyzed a 30- port radial splitter that can be used for an in-phase feeding of a 30-high power transmitter. Our objectives here have been geared towards estimating the mutual coupling between the 30 ports and exploring the port and alignment failure analysis, its graceful degradation results, and relevant efficiency performance for such high power multi-port network will be presented. In the second study, we investigated the mutual coupling of a multifeedhorn structure of a large reflector antenna in order to allow multi-beam radiation or reception. This high gain antenna utilizes integrated feeds with precise physical tight spacing and could suffer from strong inter-coupling. Mutual coupling effects here include input match deterioration, beam width broadening, and cross-polarization degradation due to the proximity coupling of these various feeds. Our study derived accurate feed location expressions as well as methods to improve the decoupling between the feeds that have been implemented. These results will be discussed. For the third study, we carried out extensive investigates into the mutual coupling effects amidst wireless laptop antennas for a MIMO system implementation. For a laptop use, it is required to determine the best location, optimum spacing, and orientations of these antennas in order to achieve the maximum benefits of the system’s diversity. First, we studied the coupling between two antennas as a function of their spacing, types, and orientations. Subsequently, we extended the study to a controlled multi-antenna system for a MIMO implementation. Design rules for such implementation have been derived and will be discussed in detail

    Static Reflective Surfaces for Improved Terahertz Coverage

    Get PDF
    LoS (Line of Sight) MIMO (Multiple Input Multiple Output) is considered the best way to deliver high capacity channels for terahertz communications due to the severe attenuation suffered by reflected components. Unfortunately, terahertz links are easily blocked by any obstruction resulting in link breakage. Therefore, it is necessary to provide alternative paths via reflectors. A problem shared by LoS paths and reflected paths (via polished reflectors) is that the channel matrix is rank 1 in the far-field. As a result, the achieved capacity is lower than what can theoretically be achieved in a rich multi-path environment. In this work, we simultaneously solve the channel rank problem and the coverage problem by using static reflective surfaces which provide limited scattering of the incident signal in a way that minimizes signal loss but provides multiple paths to the receiver with varying phase. We construct such a surface and characterize the received signal using a terahertz testbed. We show that using our surface, we can improve channel capacity for 2x2 LoS MIMO. We also develop a theoretical model for the received signal and show that the reflected capacity matches the measured capacity well
    • …
    corecore