1,663 research outputs found

    Very long distance connection of gigawatt size offshore wind farms: extra high-voltage ac versus high-voltage dc cost comparison

    Get PDF
    This study presents a cost comparison between commercially available high-voltage DC (HVDC) and extra high-voltage AC shore connection (±320 kV voltage source converter and 420 kV-50 Hz single-core and three-core cables), for a 1 GW offshore wind farm cluster, considering transmission distances up to 400 km. The HVDC system is a point-to-point connection whereas multiple AC intermediate compensating stations are envisaged for AC when needed. Capital costs are evaluated from recently awarded contracts, operating costs include energy losses and missed revenues due to transmission system unavailability, both estimated using North Sea wind production curves. Optimal AC intermediate compensation, if any, and reactive profiles are also taken into account. Resultsshow that HVDC has lower transmission losses at distances in excess of 130 km; however, due to the combined effect of lower AC capital cost and unavailability, using three-core aluminium cables can be more convenient up to 360 km distance

    On the viability of dc homes: an economic perspective from domestic electrical appliances

    Get PDF
    The past few years witnessed a growing acclaim for dc power systems, which is mainly justified by the increasing use of energy storage systems and renewable energy sources based mainly on solar photovoltaic technologies. However, there is also a motivation from the point of view of domestic electrical appliances. Since the vast majority of these appliances is comprised by an ac-dc converter, it can be convenient to shift the domestic power supply from ac to dc. In this context, this paper presents an economic assessment of dc homes from the energy consumption perspective and its comparison with traditional homes supplied by ac electrical power grids. In order to perform such assessment, the main type of electronic loads is powered both by ac voltage and by dc voltage, comparing the efficiency and estimated energy cost for each case. The removal of the ac-dc converter present in these loads is also analyzed and compared with the two previously referred cases, supporting the supply of dc power to this type of loads. The analysis is performed by means of experimental results obtained with a laboratorial setup, aiming to validate the feasibility of dc homes under realistic operating conditions of the loads.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by FCT within the Project Scope DAIPESEV -Development of Advanced Integrated Power Electronic Systems for Electric Vehicles: PTDC/EEI-EEE/30382/2017. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Artificial Intelligence-based Control Techniques for HVDC Systems

    Get PDF
    The electrical energy industry depends, among other things, on the ability of networks to deal with uncertainties from several directions. Smart-grid systems in high-voltage direct current (HVDC) networks, being an application of artificial intelligence (AI), are a reliable way to achieve this goal as they solve complex problems in power system engineering using AI algorithms. Due to their distinctive characteristics, they are usually effective approaches for optimization problems. They have been successfully applied to HVDC systems. This paper presents a number of issues in HVDC transmission systems. It reviews AI applications such as HVDC transmission system controllers and power flow control within DC grids in multi-terminal HVDC systems. Advancements in HVDC systems enable better performance under varying conditions to obtain the optimal dynamic response in practical settings. However, they also pose difficulties in mathematical modeling as they are non-linear and complex. ANN-based controllers have replaced traditional PI controllers in the rectifier of the HVDC link. Moreover, the combination of ANN and fuzzy logic has proven to be a powerful strategy for controlling excessively non-linear loads. Future research can focus on developing AI algorithms for an advanced control scheme for UPFC devices. Also, there is a need for a comprehensive analysis of power fluctuations or steady-state errors that can be eliminated by the quick response of this control scheme. This survey was informed by the need to develop adaptive AI controllers to enhance the performance of HVDC systems based on their promising results in the control of power systems. Doi: 10.28991/ESJ-2023-07-02-024 Full Text: PD

    Optimized Modulation and Thermal Management for Modular Power Converters

    Get PDF
    The transition to a more and more decentralized power generation based on renewable energy generation is accompanied by high challenges. Modular power converters play a central role in facing these challenges, not only for grid integration but also to provide flexible services, highly efficient power transmission and safe storage integration. These goals are the key elements in becoming independent from fossil and nuclear power plants in near future. Even if the costs for renewable energy power plants like wind or photovoltaic systems are already competitive to conventional solutions, more flexible operation and further reduction in costs are required for faster global transformation towards sustainable energy systems. The further optimization of modular power converters can be seen as an ideal way to achieve these ambitious goals. It is therefore chosen as the focus of this work

    Standardization of Power-from-Shore Grid Connections for Offshore Oil & Gas Production

    Get PDF
    Offshore oil and gas (O&G) production is typically powered by local diesel engines or gas turbines. Power-from-shore (PFS) is an alternative that takes advantage of onshore renewable production and reduces greenhouse emissions but is limited to bespoke projects that are tailored to the characteristics of each site. This lack of repetition leads to an increase in the construction risk, delivery time, and lifecycle costs, therefore limiting their large-scale deployment. Furthermore, the absence of standardized designs is also notorious in mature applications such as offshore wind farms (OWF) despite their long-standing track record, with the negative consequences extensively covered in the literature. This research paper addresses offshore transmission standardization in two parts. First, by providing the scientific community with a review of the existing offshore O&G production and substations and secondly, by outlining a lean optioneering algorithm for the cost-optimized and technically feasible selection of the key design criteria. The exercise is centred on the main limiting component of the transmission systems—the cables. As such, it addresses their operational range and the cost to calculate the most effective configuration in terms of voltage and rated power. The end goal, based on the spread of connection proposals, is to cluster the candidates to a limited set of grid connection options, the achievement of which the model has been shown to be adequate.info:eu-repo/semantics/publishedVersio

    Multi-kw dc power distribution system study program

    Get PDF
    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors

    HVDC VSC link for offshore wind: operation losses and economic evaluation

    Get PDF
    High voltage direct current (HVDC) is a highly efficient alternative for trans-mitting bulk electricity over a long distance. This report presents the cost modellingand power flow simulation of an hybrid Voltage Source Converter-HVDCsystem.ope
    • …
    corecore