62,736 research outputs found

    Investigating the generalizability of EEG-based Cognitive Load Estimation Across Visualizations

    Full text link
    We examine if EEG-based cognitive load (CL) estimation is generalizable across the character, spatial pattern, bar graph and pie chart-based visualizations for the nback~task. CL is estimated via two recent approaches: (a) Deep convolutional neural network, and (b) Proximal support vector machines. Experiments reveal that CL estimation suffers across visualizations motivating the need for effective machine learning techniques to benchmark visual interface usability for a given analytic task

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    Visual analytics for supply network management: system design and evaluation

    Full text link
    We propose a visual analytic system to augment and enhance decision-making processes of supply chain managers. Several design requirements drive the development of our integrated architecture and lead to three primary capabilities of our system prototype. First, a visual analytic system must integrate various relevant views and perspectives that highlight different structural aspects of a supply network. Second, the system must deliver required information on-demand and update the visual representation via user-initiated interactions. Third, the system must provide both descriptive and predictive analytic functions for managers to gain contingency intelligence. Based on these capabilities we implement an interactive web-based visual analytic system. Our system enables managers to interactively apply visual encodings based on different node and edge attributes to facilitate mental map matching between abstract attributes and visual elements. Grounded in cognitive fit theory, we demonstrate that an interactive visual system that dynamically adjusts visual representations to the decision environment can significantly enhance decision-making processes in a supply network setting. We conduct multi-stage evaluation sessions with prototypical users that collectively confirm the value of our system. Our results indicate a positive reaction to our system. We conclude with implications and future research opportunities.The authors would like to thank the participants of the 2015 Businessvis Workshop at IEEE VIS, Prof. Benoit Montreuil, and Dr. Driss Hakimi for their valuable feedback on an earlier version of the software; Prof. Manpreet Hora for assisting with and Georgia Tech graduate students for participating in the evaluation sessions; and the two anonymous reviewers for their detailed comments and suggestions. The study was in part supported by the Tennenbaum Institute at Georgia Tech Award # K9305. (K9305 - Tennenbaum Institute at Georgia Tech Award)Accepted manuscrip

    From Keyword Search to Exploration: How Result Visualization Aids Discovery on the Web

    No full text
    A key to the Web's success is the power of search. The elegant way in which search results are returned is usually remarkably effective. However, for exploratory search in which users need to learn, discover, and understand novel or complex topics, there is substantial room for improvement. Human computer interaction researchers and web browser designers have developed novel strategies to improve Web search by enabling users to conveniently visualize, manipulate, and organize their Web search results. This monograph offers fresh ways to think about search-related cognitive processes and describes innovative design approaches to browsers and related tools. For instance, while key word search presents users with results for specific information (e.g., what is the capitol of Peru), other methods may let users see and explore the contexts of their requests for information (related or previous work, conflicting information), or the properties that associate groups of information assets (group legal decisions by lead attorney). We also consider the both traditional and novel ways in which these strategies have been evaluated. From our review of cognitive processes, browser design, and evaluations, we reflect on the future opportunities and new paradigms for exploring and interacting with Web search results
    • 

    corecore