2,905 research outputs found

    UNDERSTANDING THE PARADOX OF MENTAL EFFORT IN ONLINE LEARNING CONVERSATIONS

    Get PDF
    This study investigates inquiry-based interaction and learning outcomes mediated by two types of artifact-centered discourse environments. The study aims to promote social construction of knowledge by optimizing the division of mental effort between pragmatic and semantic grounding activities. We present a theoretical research model by combining social constructivism, grounding theory, and cognitive load theory. We carried out a quasi-experimental study using survey instruments, content analysis, sequential analysis, and knowledge tests for a holistic approach to understand the paradox of mental effort in online learning conversations. The primary finding of this study is that a linked artifact-centered discourse environment facilitates pragmatic grounding activities to attain a common ground in online learning conversations. Additionally, less need for pragmatic grounding activities leaves more room for semantic grounding activities. Finally, more semantic grounding activities lead to a deeper understanding of the learning material

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    A Pedagogical Application Framework for Synchronous Collaboration

    Get PDF
    Designing successful collaborative learning activities is a new focus of research within the E-Learning community. The social dimension inside the traditional face-to-face collaborative learning is important and must be included in the online learning designs. In this thesis, we introduce the concept of Pedagogical Application Frameworks, and describe Beehive, a pedagogical application framework for synchronous collaborative learning. Beehive guides teachers in reusing online collaborative learning activities based on well-known pedagogical designs, to accomplish their educational objectives within a certain educational setting, and also simplifies the development of new pedagogical collaboration designs. Beehive’s conceptual model has four abstraction layers: Pedagogical Techniques, Collaboration Task patterns, CSCL Components, and CSCL script. By following the framework’s guidelines and specifications, developers will place the control of designing pedagogical collaboration tools in the teacher’s hand rather than in the software designer’s

    A Pedagogical Application Framework for Synchronous Collaboration

    Get PDF
    Designing successful collaborative learning activities is a new focus of research within the E-Learning community. The social dimension inside the traditional face-to-face collaborative learning is important and must be included in the online learning designs. In this thesis, we introduce the concept of Pedagogical Application Frameworks, and describe Beehive, a pedagogical application framework for synchronous collaborative learning. Beehive guides teachers in reusing online collaborative learning activities based on well-known pedagogical designs, to accomplish their educational objectives within a certain educational setting, and also simplifies the development of new pedagogical collaboration designs. Beehive’s conceptual model has four abstraction layers: Pedagogical Techniques, Collaboration Task patterns, CSCL Components, and CSCL script. By following the framework’s guidelines and specifications, developers will place the control of designing pedagogical collaboration tools in the teacher’s hand rather than in the software designer’s

    Design of an E-learning system using semantic information and cloud computing technologies

    Get PDF
    Humanity is currently suffering from many difficult problems that threaten the life and survival of the human race. It is very easy for all mankind to be affected, directly or indirectly, by these problems. Education is a key solution for most of them. In our thesis we tried to make use of current technologies to enhance and ease the learning process. We have designed an e-learning system based on semantic information and cloud computing, in addition to many other technologies that contribute to improving the educational process and raising the level of students. The design was built after much research on useful technology, its types, and examples of actual systems that were previously discussed by other researchers. In addition to the proposed design, an algorithm was implemented to identify topics found in large textual educational resources. It was tested and proved to be efficient against other methods. The algorithm has the ability of extracting the main topics from textual learning resources, linking related resources and generating interactive dynamic knowledge graphs. This algorithm accurately and efficiently accomplishes those tasks even for bigger books. We used Wikipedia Miner, TextRank, and Gensim within our algorithm. Our algorithm‘s accuracy was evaluated against Gensim, largely improving its accuracy. Augmenting the system design with the implemented algorithm will produce many useful services for improving the learning process such as: identifying main topics of big textual learning resources automatically and connecting them to other well defined concepts from Wikipedia, enriching current learning resources with semantic information from external sources, providing student with browsable dynamic interactive knowledge graphs, and making use of learning groups to encourage students to share their learning experiences and feedback with other learners.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Luis Sánchez Fernández.- Secretario: Luis de la Fuente Valentín.- Vocal: Norberto Fernández Garcí

    Proceedings of the First International Workshop on Mashup Personal Learning Environments

    Get PDF
    Wild, F., Kalz, M., & Palmér, M. (Eds.) (2008). Proceedings of the First International Workshop on Mashup Personal Learning Environments (MUPPLE08). September, 17, 2008, Maastricht, The Netherlands: CEUR Workshop Proceedings, ISSN 1613-0073. Available at http://ceur-ws.org/Vol-388.The work on this publication has been sponsored by the TENCompetence Integrated Project (funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org]) and partly sponsored by the LTfLL project (funded by the European Commission's 7th Framework Programme, priority ISCT. Contract 212578 [http://www.ltfll-project.org

    A conceptual framework for developing explorative e-learning strategy using ontology-based knowledge management

    Get PDF
    This paper presents a conceptual framework for developing explorative e-learning strategy using ontology-based knowledge management. It conducts a comprehensive analysis of the applicability of ontologies in management of knowledge, with a particular reference to the development of explorative e-learning environments for enhancing an efficient use and reuse of available information and knowledge in e-learning, leading to a better understanding of the main issues for developing effective explorative e-learning strategies in an e-learning environment

    Understanding Idea Creation in Collaborative Discourse through Networks: The Joint Attention-Interaction-Creation (AIC) Framework

    Full text link
    In Computer-Supported Collaborative Learning, ideas generated through collaborative discourse are informative indicators of students' learning and collaboration. Idea creation is a product of emergent and interactive socio-cognitive endeavors. Therefore, analyzing ideas requires capturing contextual information in addition to the ideas themselves. In this paper, we propose the Joint Attention-Interaction-Creation (AIC) framework, which captures important dynamics in collaborative discourse, from attention and interaction to creation. The framework was developed from the networked lens, informed by natural language processing techniques, and inspired by socio-semantic network analysis. A case study was included to exemplify the framework's application in classrooms and to illustrate its potential in broader contexts
    • …
    corecore