1,746 research outputs found

    Recommender systems and their ethical challenges

    Get PDF
    This article presents the first, systematic analysis of the ethical challenges posed by recommender systems through a literature review. The article identifies six areas of concern, and maps them onto a proposed taxonomy of different kinds of ethical impact. The analysis uncovers a gap in the literature: currently user-centred approaches do not consider the interests of a variety of other stakeholders—as opposed to just the receivers of a recommendation—in assessing the ethical impacts of a recommender system

    Towards Integration of Artificial Intelligence into Medical Devices as a Real-Time Recommender System for Personalised Healthcare:State-of-the-Art and Future Prospects

    Get PDF
    In the era of big data, artificial intelligence (AI) algorithms have the potential to revolutionize healthcare by improving patient outcomes and reducing healthcare costs. AI algorithms have frequently been used in health care for predictive modelling, image analysis and drug discovery. Moreover, as a recommender system, these algorithms have shown promising impacts on personalized healthcare provision. A recommender system learns the behaviour of the user and predicts their current preferences (recommends) based on their previous preferences. Implementing AI as a recommender system improves this prediction accuracy and solves cold start and data sparsity problems. However, most of the methods and algorithms are tested in a simulated setting which cannot recapitulate the influencing factors of the real world. This review article systematically reviews prevailing methodologies in recommender systems and discusses the AI algorithms as recommender systems specifically in the field of healthcare. It also provides discussion around the most cutting-edge academic and practical contributions present in the literature, identifies performance evaluation matrices, challenges in the implementation of AI as a recommender system, and acceptance of AI-based recommender systems by clinicians. The findings of this article direct researchers and professionals to comprehend currently developed recommender systems and the future of medical devices integrated with real-time recommender systems for personalized healthcare

    Combining Social- and Information-based Approaches for Personalised Recommendation on Sequencing Learning Activities

    Get PDF
    Lifelong learners who assign learning activities (from multiple sources) to attain certain learning goals throughout their lives need to know which learning activities are (most) suitable and in which sequence these should be performed. Learners need support in this way finding process (selection and sequencing), and we argue this could be provided by using personalised recommender systems. To enable personalisation, collaborative filtering could use information about learners and learning activities, since their alignment contributes to learning efficiency. A model for way finding has been developed that presents personalised recommendations in relation to information about learning goals, learning activities and learners. A personalised recommender system has been developed accordingly, and recommends learners on the best next learning activities. Both model and system combine social-based (i.e., completion data from other learners) and information-based (i.e., metadata from learner profiles and learning activities) approaches to recommend the best next learning activity to be completed

    Business Intelligence Through Personalised Location-Aware Service Delivery

    Get PDF

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    Personalized Video Recommendation Using Rich Contents from Videos

    Full text link
    Video recommendation has become an essential way of helping people explore the massive videos and discover the ones that may be of interest to them. In the existing video recommender systems, the models make the recommendations based on the user-video interactions and single specific content features. When the specific content features are unavailable, the performance of the existing models will seriously deteriorate. Inspired by the fact that rich contents (e.g., text, audio, motion, and so on) exist in videos, in this paper, we explore how to use these rich contents to overcome the limitations caused by the unavailability of the specific ones. Specifically, we propose a novel general framework that incorporates arbitrary single content feature with user-video interactions, named as collaborative embedding regression (CER) model, to make effective video recommendation in both in-matrix and out-of-matrix scenarios. Our extensive experiments on two real-world large-scale datasets show that CER beats the existing recommender models with any single content feature and is more time efficient. In addition, we propose a priority-based late fusion (PRI) method to gain the benefit brought by the integrating the multiple content features. The corresponding experiment shows that PRI brings real performance improvement to the baseline and outperforms the existing fusion methods
    • …
    corecore