81,714 research outputs found

    An intuitive control space for material appearance

    Get PDF
    Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction

    Transport-Based Neural Style Transfer for Smoke Simulations

    Full text link
    Artistically controlling fluids has always been a challenging task. Optimization techniques rely on approximating simulation states towards target velocity or density field configurations, which are often handcrafted by artists to indirectly control smoke dynamics. Patch synthesis techniques transfer image textures or simulation features to a target flow field. However, these are either limited to adding structural patterns or augmenting coarse flows with turbulent structures, and hence cannot capture the full spectrum of different styles and semantically complex structures. In this paper, we propose the first Transport-based Neural Style Transfer (TNST) algorithm for volumetric smoke data. Our method is able to transfer features from natural images to smoke simulations, enabling general content-aware manipulations ranging from simple patterns to intricate motifs. The proposed algorithm is physically inspired, since it computes the density transport from a source input smoke to a desired target configuration. Our transport-based approach allows direct control over the divergence of the stylization velocity field by optimizing incompressible and irrotational potentials that transport smoke towards stylization. Temporal consistency is ensured by transporting and aligning subsequent stylized velocities, and 3D reconstructions are computed by seamlessly merging stylizations from different camera viewpoints.Comment: ACM Transaction on Graphics (SIGGRAPH ASIA 2019), additional materials: http://www.byungsoo.me/project/neural-flow-styl

    DeLight-Net: Decomposing Reflectance Maps into Specular Materials and Natural Illumination

    Full text link
    In this paper we are extracting surface reflectance and natural environmental illumination from a reflectance map, i.e. from a single 2D image of a sphere of one material under one illumination. This is a notoriously difficult problem, yet key to various re-rendering applications. With the recent advances in estimating reflectance maps from 2D images their further decomposition has become increasingly relevant. To this end, we propose a Convolutional Neural Network (CNN) architecture to reconstruct both material parameters (i.e. Phong) as well as illumination (i.e. high-resolution spherical illumination maps), that is solely trained on synthetic data. We demonstrate that decomposition of synthetic as well as real photographs of reflectance maps, both in High Dynamic Range (HDR), and, for the first time, on Low Dynamic Range (LDR) as well. Results are compared to previous approaches quantitatively as well as qualitatively in terms of re-renderings where illumination, material, view or shape are changed.Comment: Stamatios Georgoulis and Konstantinos Rematas contributed equally to this wor

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne

    MoSculp: Interactive Visualization of Shape and Time

    Full text link
    We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sculptures and provides a user interface for rendering it in different styles, including the options to insert the sculpture back into the original video, render it in a synthetic scene or physically print it. To provide this end-to-end workflow, we introduce an algorithm that estimates that human's 3D geometry over time from a set of 2D images and develop a 3D-aware image-based rendering approach that embeds the sculpture back into the scene. By automating the process, our system takes motion sculpture creation out of the realm of professional artists, and makes it applicable to a wide range of existing video material. By providing viewers with 3D information, motion sculptures reveal space-time motion information that is difficult to perceive with the naked eye, and allow viewers to interpret how different parts of the object interact over time. We validate the effectiveness of this approach with user studies, finding that our motion sculpture visualizations are significantly more informative about motion than existing stroboscopic and space-time visualization methods.Comment: UIST 2018. Project page: http://mosculp.csail.mit.edu

    Interferometric Evidence for Resolved Warm Dust in the DQ Tau System

    Get PDF
    We report on near-infrared (IR) interferometric observations of the double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis of \citet{Mathieu1997}. Further, DQ Tau exhibits significant near-IR excess; modeling our data requires inclusion of near-IR light from an 'excess' source. Remarkably the excess source is resolved in our data, similar in scale to the binary itself (∼\sim 0.2 AU at apastron), rather than the larger circumbinary disk (∼\sim 0.4 AU radius). Our observations support the \citet{Mathieu1997} and \citet{Carr2001} inference of significant warm material near the DQ Tau binary.Comment: 14 pgs, 3 figures, ApJL in pres
    • …
    corecore