20,091 research outputs found

    A Test Bed for Evaluating the Performance of IoT Networks

    Get PDF
    The use of smaller, personal IoT networks has increased over the past several years. These devices demand a lot of resources but only have limited access. To establish and sustain a flexible network connection, 6LoWPAN with RPL protocol is commonly used. While RPL provides a low-cost solution for connection, it lacks load balancing mechanisms. Improvements in OF load balancing can be implemented to strengthen network stability. This paper proposes a test bed configuration to show the toll of frequent parent switching on 6LoWPAN. Contiki’s RPL 6LoWPAN software runs on STM32 Nucleo microcontrollers with expansion boards for this test bed. The configuration tests frequency of parent changes and packet loss to demonstrate network instability of different RPL OFs. Tests on MRHOF for RPL were executed to confirm the working configuration. Results, with troubleshooting and improvements, show a working bed. The laid-out configuration provides a means for testing network stability in IoT networks

    Rate-Distortion Classification for Self-Tuning IoT Networks

    Full text link
    Many future wireless sensor networks and the Internet of Things are expected to follow a software defined paradigm, where protocol parameters and behaviors will be dynamically tuned as a function of the signal statistics. New protocols will be then injected as a software as certain events occur. For instance, new data compressors could be (re)programmed on-the-fly as the monitored signal type or its statistical properties change. We consider a lossy compression scenario, where the application tolerates some distortion of the gathered signal in return for improved energy efficiency. To reap the full benefits of this paradigm, we discuss an automatic sensor profiling approach where the signal class, and in particular the corresponding rate-distortion curve, is automatically assessed using machine learning tools (namely, support vector machines and neural networks). We show that this curve can be reliably estimated on-the-fly through the computation of a small number (from ten to twenty) of statistical features on time windows of a few hundreds samples

    Just-in-Time Memoryless Trust for Crowdsourced IoT Services

    Full text link
    We propose just-in-time memoryless trust for crowdsourced IoT services. We leverage the characteristics of the IoT service environment to evaluate their trustworthiness. A novel framework is devised to assess a service's trust without relying on previous knowledge, i.e., memoryless trust. The framework exploits service-session-related data to offer a trust value valid only during the current session, i.e., just-in-time trust. Several experiments are conducted to assess the efficiency of the proposed framework.Comment: 8 pages, Accepted and to appear in 2020 IEEE International Conference on Web Services (ICWS). Content may change prior to final publicatio

    VIoLET: A Large-scale Virtual Environment for Internet of Things

    Full text link
    IoT deployments have been growing manifold, encompassing sensors, networks, edge, fog and cloud resources. Despite the intense interest from researchers and practitioners, most do not have access to large-scale IoT testbeds for validation. Simulation environments that allow analytical modeling are a poor substitute for evaluating software platforms or application workloads in realistic computing environments. Here, we propose VIoLET, a virtual environment for defining and launching large-scale IoT deployments within cloud VMs. It offers a declarative model to specify container-based compute resources that match the performance of the native edge, fog and cloud devices using Docker. These can be inter-connected by complex topologies on which private/public networks, and bandwidth and latency rules are enforced. Users can configure synthetic sensors for data generation on these devices as well. We validate VIoLET for deployments with > 400 devices and > 1500 device-cores, and show that the virtual IoT environment closely matches the expected compute and network performance at modest costs. This fills an important gap between IoT simulators and real deployments.Comment: To appear in the Proceedings of the 24TH International European Conference On Parallel and Distributed Computing (EURO-PAR), August 27-31, 2018, Turin, Italy, europar2018.org. Selected as a Distinguished Paper for presentation at the Plenary Session of the conferenc

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing
    • …
    corecore