10,023 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Constructing a Theological Framework That Revitalizes the Missional Nature of Churches of Christ in South Australia

    Get PDF
    This thesis addresses the need for a theological framework that revitalizes the missional nature of Churches of Christ in South Australia. The problem identified within this ministry context was a lack of clear theological principles that informed a common understanding of identity for missional engagement. The purpose of the project was to create a study guide that informs common theological commitments and grounds congregations for missional vitality. A research and development team made up of seven Church of Christ ministers from different backgrounds was assembled to design a curriculum that addressed the problem. Through eight two-hour sessions over four months in the first half of 2022, the team discussed a theological framework that could revitalize mission. This was informed by a Trinitarian theological rationale introduced as perichoresis. The conceptual framework for discussions included (1) the historical and theological foundations of Churches of Christ, (2) a Trinitarian doctrine of God presented as perichoresis, (3) contemporary congregational practices, and (4) a theological proposal for re-imagining mission. The team developed a study guide that promotes a dynamic theological framework for practicing theology and revitalizing the missional nature of the church. The artifact, Movement & Identity: Participating in the Life of God’s Mission, was evaluated by the team and members of Church of Christ congregations in South Australia. The curriculum is designed to assist participants with practical theological interpretation through (1) discovering new ideas about God in the context of Churches of Christ traditions, (2) engaging with contextual theology in community, (3) participating in God’s mission, and (4) reflecting on how God’s agency transforms the church. The development of the study guide will stimulate a practical theological framework that promotes dynamic theological dialogue and missional vitality for Churches of Christ in South Australia

    Interview with Wolfgang Knauss

    Get PDF
    An oral history in four sessions (September 2019–January 2020) with Wolfgang Knauss, von Kármán Professor of Aeronautics and Applied Mechanics, Emeritus. Born in Germany in 1933, he speaks about his early life and experiences under the Nazi regime, his teenage years in Siegen and Heidelberg during the Allied occupation, and his move to Pasadena, California, in 1954 under the sponsorship of a local minister and his family. He enrolled in Caltech as an undergraduate in 1957, commencing a more than half-century affiliation with the Institute and GALCIT (today the Graduate Aerospace Laboratories of Caltech). He recalls the roots of his interest in aeronautics, his PhD solid mechanics studies with his advisor, M. Williams, and the GALCIT environment in the late 1950s and 1960s at the dawn of the Space Age, including the impact of Sputnik and classes with NASA astronauts. He discusses his experimental and theoretical work on materials deformation, dynamic fracture, and crack propagation, including his solid-propellant fuels research for NASA and the US Army, wide-ranging programs with the US Navy, and his pioneering micromechanics investigations and work on the time-dependent fracture of polymers in the 1990s. He offers his perspective on GALCIT’s academic culture, its solid mechanics and fluid mechanics programs, and its evolving administrative directions over the course of five decades, as well as its impact and reputation both within and beyond Caltech. He describes his work with Caltech’s undergraduate admissions committee and his scientific collaborations with numerous graduate students and postdocs and shares his recollections of GALCIT and other Caltech colleagues, including C. Babcock, D. Coles, R.P. Feynman, Y.C. Fung, G. Neugebauer, G. Housner, D. Hudson, H. Liepmann, A. Klein, G. Ravichandran, A. Rosakis, A. Roshko, and E. Sechler. Six appendices contributed by Dr. Knauss, offering further insight into his life and career, also form part of this oral history and are cross-referenced in the main text

    A systematic literature review on information systems for disaster management and proposals for its future research agenda

    Get PDF
    Emergency management information systems (EMIS) are fundamental for responding to disasters effectively since they provide and process emergency-related information. A literature stream has emerged that corresponds with the increased relevance of the wide array of different information systems that have been used in response to disasters. In addition, the discussion around systems used primarily within responder organizations broadened to systems such as social media that are open to the general public. However, a systematic review of the EMIS literature stream is still missing. This literature review presents a timeline of EMIS research from 1990 up to 2021. It shows the types of information system scholars focused on, and what disaster response functions they supported. It furthermore identifies challenges in EMIS research and proposes future research directions

    Cost-effective non-destructive testing of biomedical components fabricated using additive manufacturing

    Get PDF
    Biocompatible titanium-alloys can be used to fabricate patient-specific medical components using additive manufacturing (AM). These novel components have the potential to improve clinical outcomes in various medical scenarios. However, AM introduces stability and repeatability concerns, which are potential roadblocks for its widespread use in the medical sector. Micro-CT imaging for non-destructive testing (NDT) is an effective solution for post-manufacturing quality control of these components. Unfortunately, current micro-CT NDT scanners require expensive infrastructure and hardware, which translates into prohibitively expensive routine NDT. Furthermore, the limited dynamic-range of these scanners can cause severe image artifacts that may compromise the diagnostic value of the non-destructive test. Finally, the cone-beam geometry of these scanners makes them susceptible to the adverse effects of scattered radiation, which is another source of artifacts in micro-CT imaging. In this work, we describe the design, fabrication, and implementation of a dedicated, cost-effective micro-CT scanner for NDT of AM-fabricated biomedical components. Our scanner reduces the limitations of costly image-based NDT by optimizing the scanner\u27s geometry and the image acquisition hardware (i.e., X-ray source and detector). Additionally, we describe two novel techniques to reduce image artifacts caused by photon-starvation and scatter radiation in cone-beam micro-CT imaging. Our cost-effective scanner was designed to match the image requirements of medium-size titanium-alloy medical components. We optimized the image acquisition hardware by using an 80 kVp low-cost portable X-ray unit and developing a low-cost lens-coupled X-ray detector. Image artifacts caused by photon-starvation were reduced by implementing dual-exposure high-dynamic-range radiography. For scatter mitigation, we describe the design, manufacturing, and testing of a large-area, highly-focused, two-dimensional, anti-scatter grid. Our results demonstrate that cost-effective NDT using low-cost equipment is feasible for medium-sized, titanium-alloy, AM-fabricated medical components. Our proposed high-dynamic-range strategy improved by 37% the penetration capabilities of an 80 kVp micro-CT imaging system for a total x-ray path length of 19.8 mm. Finally, our novel anti-scatter grid provided a 65% improvement in CT number accuracy and a 48% improvement in low-contrast visualization. Our proposed cost-effective scanner and artifact reduction strategies have the potential to improve patient care by accelerating the widespread use of patient-specific, bio-compatible, AM-manufactured, medical components

    Educating Sub-Saharan Africa:Assessing Mobile Application Use in a Higher Learning Engineering Programme

    Get PDF
    In the institution where I teach, insufficient laboratory equipment for engineering education pushed students to learn via mobile phones or devices. Using mobile technologies to learn and practice is not the issue, but the more important question lies in finding out where and how they use mobile tools for learning. Through the lens of Kearney et al.’s (2012) pedagogical model, using authenticity, personalisation, and collaboration as constructs, this case study adopts a mixed-method approach to investigate the mobile learning activities of students and find out their experiences of what works and what does not work. Four questions are borne out of the over-arching research question, ‘How do students studying at a University in Nigeria perceive mobile learning in electrical and electronic engineering education?’ The first three questions are answered from qualitative, interview data analysed using thematic analysis. The fourth question investigates their collaborations on two mobile social networks using social network and message analysis. The study found how students’ mobile learning relates to the real-world practice of engineering and explained ways of adapting and overcoming the mobile tools’ limitations, and the nature of the collaborations that the students adopted, naturally, when they learn in mobile social networks. It found that mobile engineering learning can be possibly located in an offline mobile zone. It also demonstrates that investigating the effectiveness of mobile learning in the mobile social environment is possible by examining users’ interactions. The study shows how mobile learning personalisation that leads to impactful engineering learning can be achieved. The study shows how to manage most interface and technical challenges associated with mobile engineering learning and provides a new guide for educators on where and how mobile learning can be harnessed. And it revealed how engineering education can be successfully implemented through mobile tools

    Substrate-specificity of the DNA-protein crosslink repair protease SPRTN

    Get PDF

    Linguistic- and Acoustic-based Automatic Dementia Detection using Deep Learning Methods

    Get PDF
    Dementia can affect a person's speech and language abilities, even in the early stages. Dementia is incurable, but early detection can enable treatment that can slow down and maintain mental function. Therefore, early diagnosis of dementia is of great importance. However, current dementia detection procedures in clinical practice are expensive, invasive, and sometimes inaccurate. In comparison, computational tools based on the automatic analysis of spoken language have the potential to be applied as a cheap, easy-to-use, and objective clinical assistance tool for dementia detection. In recent years, several studies have shown promise in this area. However, most studies focus heavily on the machine learning aspects and, as a consequence, often lack sufficient incorporation of clinical knowledge. Many studies also concentrate on clinically less relevant tasks such as the distinction between HC and people with AD which is relatively easy and therefore less interesting both in terms of the machine learning and the clinical application. The studies in this thesis concentrate on automatically identifying signs of neurodegenerative dementia in the early stages and distinguishing them from other clinical, diagnostic categories related to memory problems: (FMD, MCI, and HC). A key focus, when designing the proposed systems has been to better consider (and incorporate) currently used clinical knowledge and also to bear in mind how these machine-learning based systems could be translated for use in real clinical settings. Firstly, a state-of-the-art end-to-end system is constructed for extracting linguistic information from automatically transcribed spontaneous speech. The system's architecture is based on hierarchical principles thereby mimicking those used in clinical practice where information at both word-, sentence- and paragraph-level is used when extracting information to be used for diagnosis. Secondly, hand-crafted features are designed that are based on clinical knowledge of the importance of pausing and rhythm. These are successfully joined with features extracted from the end-to-end system. Thirdly, different classification tasks are explored, each set up so as to represent the types of diagnostic decision-making that is relevant in clinical practice. Finally, experiments are conducted to explore how to better deal with the known problem of confounding and overlapping symptoms on speech and language from age and cognitive decline. A multi-task system is constructed that takes age into account while predicting cognitive decline. The studies use the publicly available DementiaBank dataset as well as the IVA dataset, which has been collected by our collaborators at the Royal Hallamshire Hospital, UK. In conclusion, this thesis proposes multiple methods of using speech and language information for dementia detection with state-of-the-art deep learning technologies, confirming the automatic system's potential for dementia detection

    Exploring Blockchain Adoption Supply Chains: Opportunities and Challenges

    Get PDF
    Acquisition Management / Grant technical reportAcquisition Research Program Sponsored Report SeriesSponsored Acquisition Research & Technical ReportsIn modern supply chains, acquisition often occurs with the involvement of a network of organizations. The resilience, efficiency, and effectiveness of supply networks are crucial for the viability of acquisition. Disruptions in the supply chain require adequate communication infrastructure to ensure resilience. However, supply networks do not have a shared information technology infrastructure that ensures effective communication. Therefore decision-makers seek new methodologies for supply chain management resilience. Blockchain technology offers new decentralization and service delegation methods that can transform supply chains and result in a more flexible, efficient, and effective supply chain. This report presents a framework for the application of Blockchain technology in supply chain management to improve resilience. In the first part of this study, we discuss the limitations and challenges of the supply chain system that can be addressed by integrating Blockchain technology. In the second part, the report provides a comprehensive Blockchain-based supply chain network management framework. The application of the proposed framework is demonstrated using modeling and simulation. The differences in the simulation scenarios can provide guidance for decision-makers who consider using the developed framework during the acquisition process.Approved for public release; distribution is unlimited
    • …
    corecore