3,796 research outputs found

    Quality Measures in Uncertain Data Management

    Get PDF
    Many applications deal with data that is uncertain. Some examples are applications dealing with sensor information, data integration applications and healthcare applications. Instead of these applications having to deal with the uncertainty, it should be the responsibility of the DBMS to manage all data including uncertain data. Several projects do research on this topic. In this paper, we introduce four measures to be used to assess and compare important characteristics of data and systems

    Integrating and Ranking Uncertain Scientific Data

    Get PDF
    Mediator-based data integration systems resolve exploratory queries by joining data elements across sources. In the presence of uncertainties, such multiple expansions can quickly lead to spurious connections and incorrect results. The BioRank project investigates formalisms for modeling uncertainty during scientific data integration and for ranking uncertain query results. Our motivating application is protein function prediction. In this paper we show that: (i) explicit modeling of uncertainties as probabilities increases our ability to predict less-known or previously unknown functions (though it does not improve predicting the well-known). This suggests that probabilistic uncertainty models offer utility for scientific knowledge discovery; (ii) small perturbations in the input probabilities tend to produce only minor changes in the quality of our result rankings. This suggests that our methods are robust against slight variations in the way uncertainties are transformed into probabilities; and (iii) several techniques allow us to evaluate our probabilistic rankings efficiently. This suggests that probabilistic query evaluation is not as hard for real-world problems as theory indicates

    Scalable Probabilistic Similarity Ranking in Uncertain Databases (Technical Report)

    Get PDF
    This paper introduces a scalable approach for probabilistic top-k similarity ranking on uncertain vector data. Each uncertain object is represented by a set of vector instances that are assumed to be mutually-exclusive. The objective is to rank the uncertain data according to their distance to a reference object. We propose a framework that incrementally computes for each object instance and ranking position, the probability of the object falling at that ranking position. The resulting rank probability distribution can serve as input for several state-of-the-art probabilistic ranking models. Existing approaches compute this probability distribution by applying a dynamic programming approach of quadratic complexity. In this paper we theoretically as well as experimentally show that our framework reduces this to a linear-time complexity while having the same memory requirements, facilitated by incremental accessing of the uncertain vector instances in increasing order of their distance to the reference object. Furthermore, we show how the output of our method can be used to apply probabilistic top-k ranking for the objects, according to different state-of-the-art definitions. We conduct an experimental evaluation on synthetic and real data, which demonstrates the efficiency of our approach

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201

    Handling location uncertainty in probabilistic location-dependent queries

    Get PDF
    Location-based services have motivated intensive research in the field of mobile computing, and particularly on location-dependent queries. Existing approaches usually assume that the location data are expressed at a fine geographic precision (physical coordinates such as GPS). However, many positioning mechanisms are subject to an inherent imprecision (e.g., the cell-id mechanism used in cellular networks can only determine the cell where a certain moving object is located). Moreover, even a GPS location can be subject to an error or be obfuscated for privacy reasons. Thus, moving objects can be considered to be associated not to an exact location, but to an uncertainty area where they can be located. In this paper, we analyze the problem introduced by the imprecision of the location data available in the data sources by modeling them using uncertainty areas. To do so, we propose to use a higher-level representation of locations which includes uncertainty, formalizing the concept of uncertainty location granule. This allows us to consider probabilistic location-dependent queries, among which we will focus on probabilistic inside (range) constraints. The adopted model allows us to develop a systematic and efficient approach for processing this kind of queries. An experimental evaluation shows that these probabilistic queries can be supported efficiently
    • 

    corecore