25,279 research outputs found

    Incorporating Clicks, Attention and Satisfaction into a Search Engine Result Page Evaluation Model

    Get PDF
    Modern search engine result pages often provide immediate value to users and organize information in such a way that it is easy to navigate. The core ranking function contributes to this and so do result snippets, smart organization of result blocks and extensive use of one-box answers or side panels. While they are useful to the user and help search engines to stand out, such features present two big challenges for evaluation. First, the presence of such elements on a search engine result page (SERP) may lead to the absence of clicks, which is, however, not related to dissatisfaction, so-called "good abandonments." Second, the non-linear layout and visual difference of SERP items may lead to non-trivial patterns of user attention, which is not captured by existing evaluation metrics. In this paper we propose a model of user behavior on a SERP that jointly captures click behavior, user attention and satisfaction, the CAS model, and demonstrate that it gives more accurate predictions of user actions and self-reported satisfaction than existing models based on clicks alone. We use the CAS model to build a novel evaluation metric that can be applied to non-linear SERP layouts and that can account for the utility that users obtain directly on a SERP. We demonstrate that this metric shows better agreement with user-reported satisfaction than conventional evaluation metrics.Comment: CIKM2016, Proceedings of the 25th ACM International Conference on Information and Knowledge Management. 201

    Bayesian Optimization Using Domain Knowledge on the ATRIAS Biped

    Full text link
    Controllers in robotics often consist of expert-designed heuristics, which can be hard to tune in higher dimensions. It is typical to use simulation to learn these parameters, but controllers learned in simulation often don't transfer to hardware. This necessitates optimization directly on hardware. However, collecting data on hardware can be expensive. This has led to a recent interest in adapting data-efficient learning techniques to robotics. One popular method is Bayesian Optimization (BO), a sample-efficient black-box optimization scheme, but its performance typically degrades in higher dimensions. We aim to overcome this problem by incorporating domain knowledge to reduce dimensionality in a meaningful way, with a focus on bipedal locomotion. In previous work, we proposed a transformation based on knowledge of human walking that projected a 16-dimensional controller to a 1-dimensional space. In simulation, this showed enhanced sample efficiency when optimizing human-inspired neuromuscular walking controllers on a humanoid model. In this paper, we present a generalized feature transform applicable to non-humanoid robot morphologies and evaluate it on the ATRIAS bipedal robot -- in simulation and on hardware. We present three different walking controllers; two are evaluated on the real robot. Our results show that this feature transform captures important aspects of walking and accelerates learning on hardware and simulation, as compared to traditional BO.Comment: 8 pages, submitted to IEEE International Conference on Robotics and Automation 201

    Data-driven evaluation metrics for heterogeneous search engine result pages

    Get PDF
    Evaluation metrics for search typically assume items are homoge- neous. However, in the context of web search, this assumption does not hold. Modern search engine result pages (SERPs) are composed of a variety of item types (e.g., news, web, entity, etc.), and their influence on browsing behavior is largely unknown. In this paper, we perform a large-scale empirical analysis of pop- ular web search queries and investigate how different item types influence how people interact on SERPs. We then infer a user brows- ing model given people’s interactions with SERP items – creating a data-driven metric based on item type. We show that the proposed metric leads to more accurate estimates of: (1) total gain, (2) total time spent, and (3) stopping depth – without requiring extensive parameter tuning or a priori relevance information. These results suggest that item heterogeneity should be accounted for when de- veloping metrics for SERPs. While many open questions remain concerning the applicability and generalizability of data-driven metrics, they do serve as a formal mechanism to link observed user behaviors directly to how performance is measured. From this approach, we can draw new insights regarding the relationship be- tween behavior and performance – and design data-driven metrics based on real user behavior rather than using metrics reliant on some hypothesized model of user browsing behavior

    Decision Making for Rapid Information Acquisition in the Reconnaissance of Random Fields

    Full text link
    Research into several aspects of robot-enabled reconnaissance of random fields is reported. The work has two major components: the underlying theory of information acquisition in the exploration of unknown fields and the results of experiments on how humans use sensor-equipped robots to perform a simulated reconnaissance exercise. The theoretical framework reported herein extends work on robotic exploration that has been reported by ourselves and others. Several new figures of merit for evaluating exploration strategies are proposed and compared. Using concepts from differential topology and information theory, we develop the theoretical foundation of search strategies aimed at rapid discovery of topological features (locations of critical points and critical level sets) of a priori unknown differentiable random fields. The theory enables study of efficient reconnaissance strategies in which the tradeoff between speed and accuracy can be understood. The proposed approach to rapid discovery of topological features has led in a natural way to to the creation of parsimonious reconnaissance routines that do not rely on any prior knowledge of the environment. The design of topology-guided search protocols uses a mathematical framework that quantifies the relationship between what is discovered and what remains to be discovered. The quantification rests on an information theory inspired model whose properties allow us to treat search as a problem in optimal information acquisition. A central theme in this approach is that "conservative" and "aggressive" search strategies can be precisely defined, and search decisions regarding "exploration" vs. "exploitation" choices are informed by the rate at which the information metric is changing.Comment: 34 pages, 20 figure

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible

    Biased Competition in Visual Processing Hierarchies: A Learning Approach Using Multiple Cues

    Get PDF
    In this contribution, we present a large-scale hierarchical system for object detection fusing bottom-up (signal-driven) processing results with top-down (model or task-driven) attentional modulation. Specifically, we focus on the question of how the autonomous learning of invariant models can be embedded into a performing system and how such models can be used to define object-specific attentional modulation signals. Our system implements bi-directional data flow in a processing hierarchy. The bottom-up data flow proceeds from a preprocessing level to the hypothesis level where object hypotheses created by exhaustive object detection algorithms are represented in a roughly retinotopic way. A competitive selection mechanism is used to determine the most confident hypotheses, which are used on the system level to train multimodal models that link object identity to invariant hypothesis properties. The top-down data flow originates at the system level, where the trained multimodal models are used to obtain space- and feature-based attentional modulation signals, providing biases for the competitive selection process at the hypothesis level. This results in object-specific hypothesis facilitation/suppression in certain image regions which we show to be applicable to different object detection mechanisms. In order to demonstrate the benefits of this approach, we apply the system to the detection of cars in a variety of challenging traffic videos. Evaluating our approach on a publicly available dataset containing approximately 3,500 annotated video images from more than 1 h of driving, we can show strong increases in performance and generalization when compared to object detection in isolation. Furthermore, we compare our results to a late hypothesis rejection approach, showing that early coupling of top-down and bottom-up information is a favorable approach especially when processing resources are constrained
    corecore