24,896 research outputs found

    Sparse Learning over Infinite Subgraph Features

    Full text link
    We present a supervised-learning algorithm from graph data (a set of graphs) for arbitrary twice-differentiable loss functions and sparse linear models over all possible subgraph features. To date, it has been shown that under all possible subgraph features, several types of sparse learning, such as Adaboost, LPBoost, LARS/LASSO, and sparse PLS regression, can be performed. Particularly emphasis is placed on simultaneous learning of relevant features from an infinite set of candidates. We first generalize techniques used in all these preceding studies to derive an unifying bounding technique for arbitrary separable functions. We then carefully use this bounding to make block coordinate gradient descent feasible over infinite subgraph features, resulting in a fast converging algorithm that can solve a wider class of sparse learning problems over graph data. We also empirically study the differences from the existing approaches in convergence property, selected subgraph features, and search-space sizes. We further discuss several unnoticed issues in sparse learning over all possible subgraph features.Comment: 42 pages, 24 figures, 4 table

    Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search

    Full text link
    Bayesian model-based reinforcement learning is a formally elegant approach to learning optimal behaviour under model uncertainty, trading off exploration and exploitation in an ideal way. Unfortunately, finding the resulting Bayes-optimal policies is notoriously taxing, since the search space becomes enormous. In this paper we introduce a tractable, sample-based method for approximate Bayes-optimal planning which exploits Monte-Carlo tree search. Our approach outperformed prior Bayesian model-based RL algorithms by a significant margin on several well-known benchmark problems -- because it avoids expensive applications of Bayes rule within the search tree by lazily sampling models from the current beliefs. We illustrate the advantages of our approach by showing it working in an infinite state space domain which is qualitatively out of reach of almost all previous work in Bayesian exploration.Comment: 14 pages, 7 figures, includes supplementary material. Advances in Neural Information Processing Systems (NIPS) 201
    • …
    corecore