34,265 research outputs found

    Categorization of interestingness measures for knowledge extraction

    Full text link
    Finding interesting association rules is an important and active research field in data mining. The algorithms of the Apriori family are based on two rule extraction measures, support and confidence. Although these two measures have the virtue of being algorithmically fast, they generate a prohibitive number of rules most of which are redundant and irrelevant. It is therefore necessary to use further measures which filter uninteresting rules. Many synthesis studies were then realized on the interestingness measures according to several points of view. Different reported studies have been carried out to identify "good" properties of rule extraction measures and these properties have been assessed on 61 measures. The purpose of this paper is twofold. First to extend the number of the measures and properties to be studied, in addition to the formalization of the properties proposed in the literature. Second, in the light of this formal study, to categorize the studied measures. This paper leads then to identify categories of measures in order to help the users to efficiently select an appropriate measure by choosing one or more measure(s) during the knowledge extraction process. The properties evaluation on the 61 measures has enabled us to identify 7 classes of measures, classes that we obtained using two different clustering techniques.Comment: 34 pages, 4 figure

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Sparse Learning over Infinite Subgraph Features

    Full text link
    We present a supervised-learning algorithm from graph data (a set of graphs) for arbitrary twice-differentiable loss functions and sparse linear models over all possible subgraph features. To date, it has been shown that under all possible subgraph features, several types of sparse learning, such as Adaboost, LPBoost, LARS/LASSO, and sparse PLS regression, can be performed. Particularly emphasis is placed on simultaneous learning of relevant features from an infinite set of candidates. We first generalize techniques used in all these preceding studies to derive an unifying bounding technique for arbitrary separable functions. We then carefully use this bounding to make block coordinate gradient descent feasible over infinite subgraph features, resulting in a fast converging algorithm that can solve a wider class of sparse learning problems over graph data. We also empirically study the differences from the existing approaches in convergence property, selected subgraph features, and search-space sizes. We further discuss several unnoticed issues in sparse learning over all possible subgraph features.Comment: 42 pages, 24 figures, 4 table
    • …
    corecore