228 research outputs found

    Re-inventing postgraduate level teaching and learning in nanoelectronics

    Get PDF
    Abstract: In the world where technology changes almost daily, the field of microelectronics or nanoelectronics is becoming an area driving the future. Therefore, more engineers specializing in micro- and/or nanoelectronics are needed in industry internationally. Globally, a distinct shift in nanoelectronic education has already been observed, where postgraduate coursework and part-coursework degrees in microelectronics and nanoelectronics are now being offered alongside the traditional research or coursework degrees in electronics or electrical engineering (light currents). However, in South Africa the situation is lagging; microelectronic or nanoelectronic specializations are offered either as honors degrees or as the research-based studies mentioned, with no dedicated coursework specialization at the master’s level. The Faculty of Engineering and the Built Environment of the University of Johannesburg (UJ) has, therefore, diversified the program and qualifications mix because of this need to teach nanoelectronics at the master’s level as well, via global partcoursework and a part-research method of delivery. However, approval for a new degree takes a number of years to be completed. Therefore, as an alternative route, nanoelectronic modules with some cross-disciplinary and multi-disciplinary modules are offered as continuing education programs (CEPs) at National Qualification Framework levels 8 and 9. The CEPs bear continuing Engineering Council of South Africa professional development credits, and can be credited as modules in the envisaged master’s degrees. The CEPs are delivered via an online approach, which develops student accessibility and brings about flexibility for students who are studying part-time. Enhanced accessibility and the fastgrowing level of internet access in Africa will allow the UJ to serve students both regionally and internationally. This paper explores the rationale for the chosen content of the CEPs and ultimately the proposed master’s degrees and discusses in detail the online mode of delivery and its benefits, as well as the approach taken to deliver courses according to this model, together with innovative opportunities

    "Small technology - big consequences" : building up the Dutch debate on nanotechnology from the bottom

    Get PDF
    The debate on nanotechnology within the Dutch community is of recent time, the last two years seeing it take off slowly but steadily. In this complex arena the Rathenau Institute has played a central role, collecting data, collating thinking, building up arguments, and organising interactive activities such as workshops, focus groups, meetings and newsletters. These all led to the first major public meeting on nanotechnology entitled "Small technology - Big consequences" held on 13 October 2004, and organised in collaboration with the parliamentary Theme Commission on Technology Policy. Nanotechnology in the Netherlands is receiving political attention. This article reviews various activities of the Rathenau Institute in the field of nanotechnology and highlights their results. It also seeks to give the reader insight into the (inter)national context in which the question of nanotechnology is being debated and the factors influencing current views on the subject

    Design of a Customized multipurpose nano-enabled implantable system for in-vivo theranostics

    Get PDF
    The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device

    From RF-Microsystem Technology to RF-Nanotechnology

    Get PDF
    The RF microsystem technology is believed to introduce a paradigm switch in the wireless revolution. Although only few companies are to date doing successful business with RF-MEMS, and on a case-by-case basis, important issues need yet to be addressed in order to maximize yield and performance stability and hence, outperform alternative competitive technologies (e.g. ferroelectric, SoS, SOI,…). Namely the behavior instability associated to: 1) internal stresses of the free standing thin layers (metal and/or dielectric) and 2) the mechanical contact degradation, be it ohmic or capacitive, which may occur due to low forces, on small areas, and while handling severe current densities.The investigation and understanding of these complex scenario, has been the core of theoretical and experimental investigations carried out in the framework of the research activity that will be presented here. The reported results encompass activities which go from coupled physics (multiphysics) modeling, to the development of experimental platforms intended to tackles the underlying physics of failure. Several original findings on RF-MEMS reliability in particular with respect to the major failure mechanisms such as dielectric charging, metal contact degradation and thermal induced phenomena have been obtained. The original use of advanced experimental setup (surface scanning microscopy, light interferometer profilometry) has allowed the definition of innovative methodology capable to isolate and separately tackle the different degradation phenomena under arbitrary working conditions. This has finally permitted on the one hand to shed some light on possible optimization (e.g. packaging) conditions, and on the other to explore the limits of microsystem technology down to the nanoscale. At nanoscale indeed many phenomena take place and can be exploited to either enhance conventional functionalities and performances (e.g. miniaturization, speed or frequency) or introduce new ones (e.g. ballistic transport). At nanoscale, moreover, many phenomena exhibit their most interesting properties in the RF spectrum (e.g. micromechanical resonances). Owing to the fact that today’s minimum manufacturable features have sizes comparable with the fundamental technological limits (e.g. surface roughness, metal grain size, …), the next generation of smart systems requires a switching paradigm on how new miniaturized components are conceived and fabricated. In fact endowed by superior electrical and mechanical performances, novel nanostructured materials (e.g. carbon based, as carbon nanotube (CNT) and graphene) may provide an answer to this endeavor. Extensively studied in the DC and in the optical range, the studies engaged in LAAS have been among the first to target microwave and millimiterwave transport properties in carbon-based material paving the way toward RF nanodevices. Preliminary modeling study performed on original test structures have highlighted the possibility to implement novel functionalities such as the coupling between the electromagnetic (RF) and microelectromechanical energy in vibrating CNT (toward the nanoradio) or the high speed detection based on ballistic transport in graphene three-terminal junction (TTJ). At the same time these study have contributed to identify the several challenges still laying ahead such as the development of adequate design and modeling tools (ballistic/diffusive, multiphysics and large scale factor) and practical implementation issues such as the effects of material quality and graphene-metal contact on the electrical transport. These subjects are the focus of presently on-going and future research activities and may represent a cornerstone of future wireless applications from microwave up to the THz range

    Collaborative supply chain management of nanotechnology industry in Malaysia

    Get PDF
    Nanotechnology is becoming important in Malaysia and the supply chain management within this promising industry is obviously crucial for ensuring the sustainability of the industry to support the nation‘s economic growth.However, there is a lack of research focus on the supply chain management (SCM) between the industry players, namely the suppliers, research and development centres, and the commercialisation companies.This study examined thecollaborative supply chain management within the nanotechnology industry context, with a more in-depth look into the wafer fabrication industry.Specifically, the research aimed to explore the current state of nanotechnology SCM and collaborative practices in Malaysia, the challenges for SCM in Malaysian nanotechnology, and finally to make recommendations to improve the collaboration within SCM based on specific projects.This study was cross-sectional in nature and used a qualitative approach in order to get a more insightful explanation.The use of triangulation approaches, which were interviews and document analysis, facilitated the research to meet the objectives. The key findings include issues highlighted in i) human resource, specifically on the need of nanotechnology education; ii) infrastructure, namely on the high start-up capital required; iii) organisational capabilities, focusing on the nature of nanotechnology which is equipment dependent; iv) process alignment, relating to involving more key players and champions; and v) collaborative supply chain management, which relies on various sources and technologies.In conclusion, this research identifies that there is a need of more knowledge in the area which can be supported by a solid education system for producing quality and qualified human capital; more political influence and government support for speeding up the process of research, development, and commercialisation of nanotechnology in Malaysia; and more collaborative practices not only through collaborations with industry players within the country and abroad, but also using collaborative techniques, methodology, and applications.Ultimately, these enhancements to the nanotechnology supply chain are for achieving the national interest, organisational interest, and personal interest

    Nanotechnology and Preventive Arms Control

    Get PDF

    Nanotechnology and preventive arms control

    Full text link
    "Nanotechnology (NT) is about analysis and engineering of structures with size between 0.1 and 100 nanometres (1 nm = 10 -9 m). At this scale, new effects occur and the boundaries between physics, chemistry and biology vanish. NT is predicted to lead to stronger but lighter materials, markedly smaller computers with immensely increased power, large and small autonomous robots, tools for manipulation of single molecules, targeted intervention within cells, connections between electronics and neurones, and more. In recent years military research and development (R&D) of NT has been expanded markedly, with the USA far in the lead. US work spans the full range from electronics via materials to biology. While much of this is still at the fundamental level, efforts are being made to bring applications to the armed forces soon. One quarter to one third of the Federal funding for NT goes to military R&D, and the USA outspends the rest of the world by a factor 4 to 10. NT applications will likely pervade all areas of the military. Very small electronics and computers will be used everywhere, e.g. in glasses, uniforms, munitions. Large-scale battle-management and strategy-planning systems will apply human-like reasoning at increasing levels of autonomy, integrating sensors, communication devices and displays into an ubiquitous network. Stronger but light-weight materials, more efficient energy storage and propulsion will allow faster and more agile vehicles in all media. NT-based materials and explosives can bring faster and more precise projectiles. Small arms, munitions and anti-personnel missiles without any metal can become possible. Systems worn by soldiers could monitor the body status and react to injury. Systems implanted into the body could monitor the biochemistry and release drugs, or make contacts to nerves and the brain to reduce the reaction time, later possibly to communicate complex information. Autonomous land vehicles, ships and aircraft would become possible mainly through strongly increased computing power. By using NT to miniaturise sensors, actuators and propulsion, autonomous systems (robots) could also become very small, principally down to below a millimetre - fully artificial or hybrid on the basis of e.g. insects or rats. Satellites and their launchers could become small and cheap, to be used in swarms for earth surveillance, or for anti-satellite attack. Whereas no marked change is expected concerning nuclear weapons, NT may lead to various new types of chemical and biological weapons that target specific organs or act selectively on a certain genetic or protein pattern. On the other hand, NT will allow cheap sensors for chemical or biological warfare agents as well as materials for decontamination. Most of these applications are ten or more years away. Using criteria of preventive arms control, potential military NT applications are evaluated. New conventional, chemical and biological weapons would jeopardise existing arms-control treaties. Armed autonomous systems would endanger the law of warfare. Military stability could decrease with small distributed battlefield sensors and in particular with armed autonomous systems. Arms racing and proliferation have to be feared with all applications. Strong dangers to humans would ensue from armed mini-/ micro-robots and new chemical/ biological weapons used by terrorists. Negative effects on human integrity and human rights could follow indirectly if body manipulation were applied in the military before a thorough societal debate on benefits, risks and regulation." (excerpt)"Die Nanotechnologie (NT) befasst sich mit der Untersuchung und Gestaltung von Strukturen, die sich in Größen zwischen 0,1 and 100 Nanometer (1 nm = 10 -9 m) bewegen. Bei dieser Größenordnung treten neue Effekte auf, und die Grenzen zwischen Physik, Chemie und Biologie verschwinden. Die Experten sagen voraus, dass NT festere und gleichzeitig leichtere Materialien, erheblich kleinere Computer mit unermesslich gesteigerter Leistung, große und kleine autonome Roboter, Werkzeuge für die Handhabung einzelner Moleküle, gezielte Eingriffe in Zellen, Verbindungen zwischen Elektronik und Neuronen und anderes mehr hervorbringen wird. In den letzten Jahren ist die militärische Forschung und Entwicklung (FuE) im Bereich der NT erheblich ausgeweitet worden. Im weltweiten Vergleich liegen die USA deutlich in Führung. Dort wird die gesamte Bandbreite von Elektronik über Materialien bis hin zur Biologie bearbeitet. Auch wenn vieles davon noch Grundlagenforschung ist, gibt es dort doch heute schon Vorbereitungen, den Streitkräften bald Anwendungsmöglichkeiten zur Verfügung zu stellen. Ein Viertel bis ein Drittel der Regierungsausgaben für NT auf Bundesebene steht für militärische FuE zur Verfügung, und die USA geben 4 bis 10 mal so viel dafür aus wie der Rest der Welt. NT-Anwendungen werden alle Bereiche des Militärs durchdringen. Hierzu zählt der umfassende Einsatz sehr kleiner Elektronik und Computer, z.B. in Brillen, Uniformen, Munition. Komplexe Schlachtführungs- und Strategieplanungssysteme werden zunehmend autonom funktionieren und menschenähnliche Überlegungen anstellen, wobei sie Sensoren, Kommunikationsgeräte und Anzeigeeinheiten zu einem allgegenwärtigen Netzwerk verbinden. Festere und dabei leichtere Materialien, effizientere Energiespeicher und Antriebe ermöglichen den Bau schnellerer und beweglicherer Land-, Wasser-, Luft- und Raumfahrzeuge. Des weiteren können NT-basierte Materialien und Sprengstoffe zur Herstellung schnellerer und genauerer Geschosse verwendet werden. Denkbar sind metallfreie Kleinwaffen, Munition und Antipersonen-Flugkörper. Zwar ist bei Kernwaffen keine große Veränderung zu erwarten, NT kann aber zu verschiedenen neuen Arten von chemischen und biologischen Waffen führen, die auf spezifische Organe zielen oder selektiv auf eine bestimmte Eiweißstruktur oder auf ein genetisches Muster hin aktiv werden. Andererseits wird NT billige Sensoren für chemische oder biologische Waffen sowie Materialien zur Entgiftung zur Verfügung stellen. Mit den meisten dieser Anwendungen ist erst in einem Zeitraum von zehn oder mehr Jahren zu rechnen. Mögliche militärische NT-Anwendungen müssen unter den Kriterien der Präventiven Rüstungskontrolle bewertet werden." (Textauszug
    corecore