23 research outputs found

    Eulerian digraphs and Dyck words, a bijection

    Full text link
    The main goal of this work is to establish a bijection between Dyck words and a family of Eulerian digraphs. We do so by providing two algorithms implementing such bijection in both directions. The connection between Dyck words and Eulerian digraphs exploits a novel combinatorial structure: a binary matrix, we call Dyck matrix, representing the cycles of an Eulerian digraph

    Enumerative combinatorics, continued fractions and total positivity

    Get PDF
    Determining whether a given number is positive is a fundamental question in mathematics. This can sometimes be answered by showing that the number counts some collection of objects, and hence, must be positive. The work done in this dissertation is in the field of enumerative combinatorics, the branch of mathematics that deals with exact counting. We will consider several problems at the interface between enumerative combinatorics, continued fractions and total positivity. In our first contribution, we exhibit a lower-triangular matrix of polynomials in six indeterminates that appears empirically to be coefficientwise totally positive, and which includes as a special case the Eulerian triangle. This generalises Brenti’s conjecture from 1996. We prove the coefficientwise total positivity of a three-variable case which includes the reversed Stirling subset triangle. Our next contribution is the study of two sequences whose Stieltjes-type continued fraction coefficients grow quadratically; we study the Genocchi and median Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for some multivariate polynomials that enumerate D-permutations, a class of permutations of 2n, with respect to a very large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings. After this, we interpret the Foata–Zeilberger bijection in terms of Laguerre digraphs, which enables us to count cycles in permutations. Using this interpretation, we obtain Jacobi-type continued fractions for multivariate polynomials enumerating permutations, and also Thron-type and Stieltjes-type continued fractions for multivariate polynomials enumerating D-permutations, in both cases including the counting of cycles. This enables us to prove some conjectured continued fractions due to Sokal–Zeng from 2022, and Randrianarivony–Zeng from 1996. Finally, we introduce the higher-order Stirling cycle and subset numbers; these generalise the Stirling cycle and subset numbers, respectively. We introduce some conjectures which involve different total-positivity questions for these triangular arrays and then answer some of them

    Subject Index Volumes 1–200

    Get PDF

    Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020)

    Get PDF
    International audienceOriginating in arithmetics and logic, the theory of ordered sets is now a field of combinatorics that is intimately linked to graph theory, universal algebra and multiple-valued logic, and that has a wide range of classical applications such as formal calculus, classification, decision aid and social choice.This international conference “Algebras, graphs and ordered set” (ALGOS) brings together specialists in the theory of graphs, relational structures and ordered sets, topics that are omnipresent in artificial intelligence and in knowledge discovery, and with concrete applications in biomedical sciences, security, social networks and e-learning systems. One of the goals of this event is to provide a common ground for mathematicians and computer scientists to meet, to present their latest results, and to discuss original applications in related scientific fields. On this basis, we hope for fruitful exchanges that can motivate multidisciplinary projects.The first edition of ALgebras, Graphs and Ordered Sets (ALGOS 2020) has a particular motivation, namely, an opportunity to honour Maurice Pouzet on his 75th birthday! For this reason, we have particularly welcomed submissions in areas related to Maurice’s many scientific interests:• Lattices and ordered sets• Combinatorics and graph theory• Set theory and theory of relations• Universal algebra and multiple valued logic• Applications: formal calculus, knowledge discovery, biomedical sciences, decision aid and social choice, security, social networks, web semantics..

    Planare Graphen und ihre Dualgraphen auf Zylinderoberflächen

    Get PDF
    In this thesis, we investigates plane drawings of undirected and directed graphs on cylinder surfaces. In the case of undirected graphs, the vertices are positioned on a line that is parallel to the cylinder’s axis and the edge curves must not intersect this line. We show that a plane drawing is possible if and only if the graph is a double-ended queue (deque) graph, i. e., the vertices of the graph can be processed according to a linear order and the edges correspond to items in the deque inserted and removed at their end vertices. A surprising consequence resulting from these observations is that the deque characterizes planar graphs with a Hamiltonian path. This result extends the known characterization of planar graphs with a Hamiltonian cycle by two stacks. By these insights, we also obtain a new characterization of queue graphs and their duals. We also consider the complexity of deciding whether a graph is a deque graph and prove that it is NP-complete. By introducing a split operation, we obtain the splittable deque and show that it characterizes planarity. For the proof, we devise an algorithm that uses the splittable deque to test whether a rotation system is planar. In the case of directed graphs, we study upward plane drawings where the edge curves follow the direction of the cylinder’s axis (standing upward planarity; SUP) or they wind around the axis (rolling upward planarity; RUP). We characterize RUP graphs by means of their duals and show that RUP and SUP swap their roles when considering a graph and its dual. There is a physical interpretation underlying this characterization: A SUP graph is to its RUP dual graph as electric current passing through a conductor to the magnetic field surrounding the conductor. Whereas testing whether a graph is RUP is NP-hard in general [Bra14], for directed graphs without sources and sink, we develop a linear-time recognition algorithm that is based on our dual graph characterization of RUP graphs.Die Arbeit beschäftigt sich mit planaren Zeichnungen ungerichteter und gerichteter Graphen auf Zylinderoberflächen. Im ungerichteten Fall werden Zeichnungen betrachtet, bei denen die Knoten auf einer Linie parallel zur Zylinderachse positioniert werden und die Kanten diese Linie nicht schneiden dürfen. Es kann gezeigt werden, dass eine planare Zeichnung genau dann möglich ist, wenn die Kanten des Graphen in einer double-ended queue (Deque) verarbeitet werden können. Ebenso lassen sich dadurch Queue, Stack und Doppelstack charakterisieren. Eine überraschende Konsequenz aus diesen Erkenntnissen ist, dass die Deque genau die planaren Graphen mit Hamiltonpfad charakterisiert. Dies erweitert die bereits bekannte Charakterisierung planarer Graphen mit Hamiltonkreis durch den Doppelstack. Im gerichteten Fall müssen die Kantenkurven entweder in Richtung der Zylinderachse verlaufen (SUP-Graphen) oder sich um die Achse herumbewegen (RUP-Graphen). Die Arbeit charakterisiert RUP-Graphen und zeigt, dass RUP und SUP ihre Rollen tauschen, wenn man Graph und Dualgraph betrachtet. Der SUP-Graph verhält sich dabei zum RUP-Graphen wie elektrischer Strom durch einen Leiter zum induzierten Magnetfeld. Ausgehend von dieser Charakterisierung ist es möglich einen Linearzeit-Algorithmus zu entwickeln, der entscheidet ob ein gerichteter Graph ohne Quellen und Senken ein RUP-Graph ist, während der allgemeine Fall NP-hart ist [Bra14]

    Combinatoire des cartes et polynome de Tutte

    Get PDF
    Les cartes sont les plongements, sans intersection d'arêtes, des graphes dans des surfaces. Les cartes constituent une discrétisation naturelle des surfaces et apparaissent aussi bien en informatique (codage d'informations visuelles) quén physique (surfaces aléatoires de la physique statistique et quantique). Nous établissons des résultats énumératifs pour de nouvelles familles de cartes. En outre, nous définissons des bijections entre les cartes et des classes combinatoires plus simples (chemins planaires, couples d'arbres). Ces bijections révèlent des propriétés structurelles importantes des cartes et permettent leur comptage, leur codage et leur génération aléatoire. Enfin, nous caractérisons un invariant fondamental de la théorie des graphes, le polynôme de Tutte, en nous appuyant sur les cartes. Cette caractérisation permet d'établir des bijections entre plusieurs structures (arbres cou- vrant, suites de degrés, configurations du tas de sable) comptées par le polynôme de Tutte.A map is a graph together with a particular (proper) embedding in a surface. Maps are a natural way of representing discrete surfaces and as such they appear both in computer science (encoding of visual data) and in physics (random lattices of statistical physics and quantum gravity). We establish enumerative results for new classes of maps. Moreover, we define several bijections between maps and simpler combinatorial classes (planar walks, pairs of trees). These bijections highlight some important structural properties and allows one to count, sample randomly and encode maps efficiently. Lastly, we give a new characterization of an important graph invariant, the Tutte polynomial, by making use of maps. This characterization allows us to establish bijections between several structures (spanning trees, sandpile configurations, outdegree sequences) counted by the Tutte polynomial
    corecore