838 research outputs found

    Video Acceleration Magnification

    Full text link
    The ability to amplify or reduce subtle image changes over time is useful in contexts such as video editing, medical video analysis, product quality control and sports. In these contexts there is often large motion present which severely distorts current video amplification methods that magnify change linearly. In this work we propose a method to cope with large motions while still magnifying small changes. We make the following two observations: i) large motions are linear on the temporal scale of the small changes; ii) small changes deviate from this linearity. We ignore linear motion and propose to magnify acceleration. Our method is pure Eulerian and does not require any optical flow, temporal alignment or region annotations. We link temporal second-order derivative filtering to spatial acceleration magnification. We apply our method to moving objects where we show motion magnification and color magnification. We provide quantitative as well as qualitative evidence for our method while comparing to the state-of-the-art.Comment: Accepted paper at CVPR 2017. Project webpage: http://acceleration-magnification.github.io

    A fully-integrated lattice Boltzmann method for fluid-structure interaction

    Full text link
    We present a fully-integrated lattice Boltzmann (LB) method for fluid--structure interaction (FSI) simulations that efficiently models deformable solids in complex suspensions and active systems. Our Eulerian method (LBRMT) couples finite-strain solids to the LB fluid on the same fixed computational grid with the reference map technique (RMT). An integral part of the LBRMT is a new LB boundary condition for moving deformable interfaces across different densities. With this fully Eulerian solid--fluid coupling, the LBRMT is well-suited for parallelization and simulating multi-body contact without remeshing or extra meshes. We validate its accuracy via a benchmark of a deformable solid in a lid-driven cavity, then showcase its versatility through examples of soft solids rotating and settling. With simulations of complex suspensions mixing, we highlight potentials of the LBRMT for studying collective behavior in soft matter and biofluid dynamics.Comment: 40 pages, 14 figure

    Observations of breakup processes of liquid jets using real-time X-ray radiography

    Get PDF
    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process

    Phase-based video motion processing

    Get PDF
    We introduce a technique to manipulate small movements in videos based on an analysis of motion in complex-valued image pyramids. Phase variations of the coefficients of a complex-valued steerable pyramid over time correspond to motion, and can be temporally processed and amplified to reveal imperceptible motions, or attenuated to remove distracting changes. This processing does not involve the computation of optical flow, and in comparison to the previous Eulerian Video Magnification method it supports larger amplification factors and is significantly less sensitive to noise. These improved capabilities broaden the set of applications for motion processing in videos. We demonstrate the advantages of this approach on synthetic and natural video sequences, and explore applications in scientific analysis, visualization and video enhancement.Shell ResearchUnited States. Defense Advanced Research Projects Agency. Soldier Centric Imaging via Computational CamerasNational Science Foundation (U.S.) (CGV-1111415)Cognex CorporationMicrosoft Research (PhD Fellowship)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Distinguishing Posed and Spontaneous Smiles by Facial Dynamics

    Full text link
    Smile is one of the key elements in identifying emotions and present state of mind of an individual. In this work, we propose a cluster of approaches to classify posed and spontaneous smiles using deep convolutional neural network (CNN) face features, local phase quantization (LPQ), dense optical flow and histogram of gradient (HOG). Eulerian Video Magnification (EVM) is used for micro-expression smile amplification along with three normalization procedures for distinguishing posed and spontaneous smiles. Although the deep CNN face model is trained with large number of face images, HOG features outperforms this model for overall face smile classification task. Using EVM to amplify micro-expressions did not have a significant impact on classification accuracy, while the normalizing facial features improved classification accuracy. Unlike many manual or semi-automatic methodologies, our approach aims to automatically classify all smiles into either `spontaneous' or `posed' categories, by using support vector machines (SVM). Experimental results on large UvA-NEMO smile database show promising results as compared to other relevant methods.Comment: 16 pages, 8 figures, ACCV 2016, Second Workshop on Spontaneous Facial Behavior Analysi

    Riesz pyramids for fast phase-based video magnification

    Get PDF
    We present a new compact image pyramid representation, the Riesz pyramid, that can be used for real-time phase-based motion magnification. Our new representation is less overcomplete than even the smallest two orientation, octave-bandwidth complex steerable pyramid, and can be implemented using compact, efficient linear filters in the spatial domain. Motion-magnified videos produced with this new representation are of comparable quality to those produced with the complex steerable pyramid. When used with phase-based video magnification, the Riesz pyramid phase-shifts image features along only their dominant orientation rather than every orientation like the complex steerable pyramid.Quanta Computer (Firm)Shell ResearchNational Science Foundation (U.S.) (CGV-1111415)Microsoft Research (PhD Fellowship)Massachusetts Institute of Technology. Department of MathematicsNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374

    Joint view expansion and filtering for automultiscopic 3D displays

    Get PDF
    Multi-view autostereoscopic displays provide an immersive, glasses-free 3D viewing experience, but they require correctly filtered content from multiple viewpoints. This, however, cannot be easily obtained with current stereoscopic production pipelines. We provide a practical solution that takes a stereoscopic video as an input and converts it to multi-view and filtered video streams that can be used to drive multi-view autostereoscopic displays. The method combines a phase-based video magnification and an interperspective antialiasing into a single filtering process. The whole algorithm is simple and can be efficiently implemented on current GPUs to yield a near real-time performance. Furthermore, the ability to retarget disparity is naturally supported. Our method is robust and works well for challenging video scenes with defocus blur, motion blur, transparent materials, and specularities. We show that our results are superior when compared to the state-of-the-art depth-based rendering methods. Finally, we showcase the method in the context of a real-time 3D videoconferencing system that requires only two cameras.Quanta Computer (Firm)National Science Foundation (U.S.) (NSF IIS-1111415)National Science Foundation (U.S.) (NSF IIS-1116296
    corecore