23,816 research outputs found

    Application of artificial intelligence for Euler solutions clustering

    Get PDF
    International audienceResults of Euler deconvolution strongly depend on the selection of viable solutions. Synthetic calculations using multiple causative sources show that Euler solutions cluster in the vicinity of causative bodies even when they do not group densely about the perimeter of the bodies. We have developed a clustering technique to serve as a tool for selecting appropriate solutions. The clustering technique uses a methodology based on artificial intelligence, and it was originally designed to classify large data sets. It is based on a geometrical approach to study object concentration in a finite metric space of any dimension. The method uses a formal definition of cluster and includes free parameters that search for clusters of given properties. Tests on synthetic and real data showed that the clustering technique successfully outlines causative bodies more accurately than other methods used to discriminate Euler solutions. In complex field cases, such as the magnetic field in the Gulf of Saint Malo region (Brittany, France), the method provides dense clusters, which more clearly outline possible causative sources. In particular, it allows one to trace offshore the main inland tectonic structures and to study their interrelationships in the Gulf of Saint Malo. The clusters provide solutions associated with particular bodies, or parts of bodies, allowing the analysis of different clusters of Euler solutions separately. This may allow computation of average parameters for individual causative bodies. Those measurements of the anomalous field that yield clusters also form dense clusters themselves. Application of this clustering technique thus outlines areas where the influence of different causative sources is more prominent. This allows one to focus on these areas for more detailed study, using different window sizes, structural indices, etc

    Clustered Graph Coloring and Layered Treewidth

    Full text link
    A graph coloring has bounded clustering if each monochromatic component has bounded size. This paper studies clustered coloring, where the number of colors depends on an excluded complete bipartite subgraph. This is a much weaker assumption than previous works, where typically the number of colors depends on an excluded minor. This paper focuses on graph classes with bounded layered treewidth, which include planar graphs, graphs of bounded Euler genus, graphs embeddable on a fixed surface with a bounded number of crossings per edge, amongst other examples. Our main theorem says that for fixed integers s,t,ks,t,k, every graph with layered treewidth at most kk and with no Ks,tK_{s,t} subgraph is (s+2)(s+2)-colorable with bounded clustering. In the s=1s=1 case, which corresponds to graphs of bounded maximum degree, we obtain polynomial bounds on the clustering. This greatly improves a corresponding result of Esperet and Joret for graphs of bounded genus. The s=3s=3 case implies that every graph with a drawing on a fixed surface with a bounded number of crossings per edge is 5-colorable with bounded clustering. Our main theorem is also a critical component in two companion papers that study clustered coloring of graphs with no Ks,tK_{s,t}-subgraph and excluding a fixed minor, odd minor or topological minor

    Non-linear dark energy clustering

    Full text link
    We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10-15 per cent for small scales.Comment: 33 pages, 7 figures. Improved presentation. References added. Matches published version in JCA

    Fluctuations in ballistic transport from Euler hydrodynamics

    Get PDF
    We propose a general formalism, within large deviation theory, giving access to the exact statistics of fluctuations of ballistically transported conserved quantities in homogeneous, stationary states. The formalism is expected to apply to any system with an Euler hydrodynamic description, classical or quantum, integrable or not, in or out of equilibrium. We express the exact scaled cumulant generating function (or full counting statistics) for any (quasi-)local conserved quantity in terms of the flux Jacobian. We show that the "extended fluctuation relations" of Bernard and Doyon follow from the linearity of the hydrodynamic equations, forming a marker of "freeness" much like the absence of hydrodynamic diffusion does. We show how an extension of the formalism gives exact exponential behaviours of spatio-temporal two-point functions of twist fields, with applications to order-parameter dynamical correlations in arbitrary homogeneous, stationary state. We explain in what situations the large deviation principle at the basis of the results fail, and discuss how this connects with nonlinear fluctuating hydrodynamics. Applying the formalism to conformal hydrodynamics, we evaluate the exact cumulants of energy transport in quantum critical systems of arbitrary dimension at low but nonzero temperatures, observing a phase transition for Lorentz boosts at the sound velocity.Comment: 27+22 pages, one figur

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric
    corecore