31,326 research outputs found

    Coordinate shadows of semi-definite and Euclidean distance matrices

    Get PDF
    We consider the projected semi-definite and Euclidean distance cones onto a subset of the matrix entries. These two sets are precisely the input data defining feasible semi-definite and Euclidean distance completion problems. We classify when these sets are closed, and use the boundary structure of these two sets to elucidate the Krislock-Wolkowicz facial reduction algorithm. In particular, we show that under a chordality assumption, the "minimal cones" of these problems admit combinatorial characterizations. As a byproduct, we record a striking relationship between the complexity of the general facial reduction algorithm (singularity degree) and facial exposedness of conic images under a linear mapping.Comment: 21 page

    Semidefinite Facial Reduction for Low-Rank Euclidean Distance Matrix Completion

    Get PDF
    The main result of this thesis is the development of a theory of semidefinite facial reduction for the Euclidean distance matrix completion problem. Our key result shows a close connection between cliques in the graph of the partial Euclidean distance matrix and faces of the semidefinite cone containing the feasible set of the semidefinite relaxation. We show how using semidefinite facial reduction allows us to dramatically reduce the number of variables and constraints required to represent the semidefinite feasible set. We have used this theory to develop a highly efficient algorithm capable of solving many very large Euclidean distance matrix completion problems exactly, without the need for a semidefinite optimization solver. For problems with a low level of noise, our SNLSDPclique algorithm outperforms existing algorithms in terms of both CPU time and accuracy. Using only a laptop, problems of size up to 40,000 nodes can be solved in under a minute and problems with 100,000 nodes require only a few minutes to solve

    Riemannian Optimization for Distance-Geometric Inverse Kinematics

    Full text link
    Solving the inverse kinematics problem is a fundamental challenge in motion planning, control, and calibration for articulated robots. Kinematic models for these robots are typically parametrized by joint angles, generating a complicated mapping between the robot configuration and the end-effector pose. Alternatively, the kinematic model and task constraints can be represented using invariant distances between points attached to the robot. In this paper, we formalize the equivalence of distance-based inverse kinematics and the distance geometry problem for a large class of articulated robots and task constraints. Unlike previous approaches, we use the connection between distance geometry and low-rank matrix completion to find inverse kinematics solutions by completing a partial Euclidean distance matrix through local optimization. Furthermore, we parametrize the space of Euclidean distance matrices with the Riemannian manifold of fixed-rank Gram matrices, allowing us to leverage a variety of mature Riemannian optimization methods. Finally, we show that bound smoothing can be used to generate informed initializations without significant computational overhead, improving convergence. We demonstrate that our inverse kinematics solver achieves higher success rates than traditional techniques, and substantially outperforms them on problems that involve many workspace constraints.Comment: 20 pages, 14 figure

    Network Topology Mapping from Partial Virtual Coordinates and Graph Geodesics

    Full text link
    For many important network types (e.g., sensor networks in complex harsh environments and social networks) physical coordinate systems (e.g., Cartesian), and physical distances (e.g., Euclidean), are either difficult to discern or inapplicable. Accordingly, coordinate systems and characterizations based on hop-distance measurements, such as Topology Preserving Maps (TPMs) and Virtual-Coordinate (VC) systems are attractive alternatives to Cartesian coordinates for many network algorithms. Herein, we present an approach to recover geometric and topological properties of a network with a small set of distance measurements. In particular, our approach is a combination of shortest path (often called geodesic) recovery concepts and low-rank matrix completion, generalized to the case of hop-distances in graphs. Results for sensor networks embedded in 2-D and 3-D spaces, as well as a social networks, indicates that the method can accurately capture the network connectivity with a small set of measurements. TPM generation can now also be based on various context appropriate measurements or VC systems, as long as they characterize different nodes by distances to small sets of random nodes (instead of a set of global anchors). The proposed method is a significant generalization that allows the topology to be extracted from a random set of graph shortest paths, making it applicable in contexts such as social networks where VC generation may not be possible.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1712.1006
    corecore