
Semidefinite Facial Reduction
for Low-Rank

Euclidean Distance Matrix
Completion

by

Nathan Krislock

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2010

c© Nathan Krislock 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The main result of this thesis is the development of a theory of semidefinite facial
reduction for the Euclidean distance matrix completion problem. Our key result
shows a close connection between cliques in the graph of the partial Euclidean dis-
tance matrix and faces of the semidefinite cone containing the feasible set of the
semidefinite relaxation. We show how using semidefinite facial reduction allows us
to dramatically reduce the number of variables and constraints required to represent
the semidefinite feasible set. We have used this theory to develop a highly efficient
algorithm capable of solving many very large Euclidean distance matrix comple-
tion problems exactly, without the need for a semidefinite optimization solver. For
problems with a low level of noise, our SNLSDPclique algorithm outperforms ex-
isting algorithms in terms of both CPU time and accuracy. Using only a laptop,
problems of size up to 40,000 nodes can be solved in under a minute and problems
with 100,000 nodes require only a few minutes to solve.

iii

Acknowledgements

There are so many for whom I am deeply grateful for their role in helping me
during my doctoral studies and in the preparation of this thesis.

First of all, I would like to thank my supervisor, Henry Wolkowicz. The in-
spiration, guidance, and support that Henry has so generously given me has been
tremendous and invaluable. I simply cannot offer enough thanks for everything he
has done for me – I am extremely grateful.

A great thanks is given to the members of my examination committee: Forbes
Burkowski, Kim-Chuan Toh, Levent Tunçel, and Stephen Vavasis. I am very grate-
ful for their comments and helpful suggestions on my thesis. In particular, I would
like to thank Forbes for his help with getting me started with using Chimera to-
gether with Python to produce some very nice molecular figures to include in my
thesis.

Having the opportunity to visit Franz Rendl at the University of Klagenfurt
in Austria for two weeks in 2009 was a truly amazing experience. I would like to
sincerely thank Franz for his idea of using point representations in my algorithm,
leading to much improved accuracy of the numerical results. I would also like to
sincerely thank Franz for his support and advice.

I am deeply grateful to my academic older brother, Miguel Anjos, for his kind
support and many discussions we have had during my time at the University of
Waterloo. I am especially grateful for Miguel’s wisdom and advice on careers in
academia, and for his encouragement.

For my coauthors Babak Alipanahi and Ali Ghodsi, I would like to sincerely
thank you for your support and enthusiasm for my results. The discussions I had
with Babak are among my most rewarding and cherished times at the University
of Waterloo.

I owe a heartfelt thanks to the staff members, faculty members, and my fellow
graduate students in the Department of Combinatorics & Optimization. There are
so many people from C&O who have greatly helped me in my academic journey,
and I am forever grateful.

I would especially like to thank the members of the University of Waterloo
Continuous Optimization Seminar for the many excellent talks and wonderful dis-
cussions we had week after week. This seminar was truly one of the best and most
memorable experiences I have from my time at the University of Waterloo.

To my friends who were there for me, especially in times of need, thank you so
much for everything. I would especially like to thank my dear friend Jason Hinek
for his extreme generosity and support – I really cannot thank you enough.

To my loving and supportive parents, Monique and Don, thank you for believing
in me – it has really meant a lot to me. Thanks to my brother Abram for our long
discussions giving me the chance to unwind when I really needed it.

iv

Thank you to my family in Japan for welcoming me with such open arms and
true kindness. You always made me feel so much at home. Thank you so much for
all your support over the years.

Above all, I thank my dear wife Misato for her endless support, guidance, and
love. The joy and encouragement she brings me is beyond description. This dream
has come true because of you. Thank you.

To our wonderful dog Chana, thank you for bringing so much happiness to our
lives everyday these past four years – it has truly been an adventure. Thanks Chana
for your loving company next to me everyday while I was writing this thesis.

This work has been partially funded by an NSERC Doctoral Postgraduate Schol-
arship.

v

Dedication

This thesis is dedicated to Takefumi Sekita (January 17, 1944 – March 23, 2010).

vi

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Related work . 3

1.1.1 Distance geometry and Euclidean distance matrices 3

1.1.2 Graph realization and graph rigidity 4

1.1.3 Facial reduction . 4

1.1.4 Sensor network localization 4

1.1.5 Molecular conformation . 6

1.2 Contributions of this thesis . 6

2 Faces and Euclidean Distance Matrices 8

2.1 Euclidean spaces . 8

2.2 Linear maps . 9

2.2.1 The adjoint and the fundamental subspaces 9

2.2.2 Orthogonal projections . 10

2.2.3 The Moore-Penrose pseudoinverse 10

2.3 Convexity and topology . 14

2.4 Cones and faces . 15

2.4.1 Faces of convex cones . 16

2.4.2 A face of the semidefinite cone 18

2.4.3 Semidefinite facial representation theorem 21

2.4.4 A theorem of the alternative for semidefinite optimization
and the minimal face . 21

vii

2.5 Euclidean distance matrices . 24

2.5.1 Properties of K . 25

2.5.2 The cone of Euclidean distance matrices is closed 33

2.5.3 The dual cone of the Euclidean distance matrix cone 36

2.6 The Euclidean distance matrix completion problem 37

2.6.1 The low-dimensional EDM completion problem 37

2.6.2 Chordal EDM completions 38

2.6.3 Graph realization and graph rigidity 39

2.6.4 Low-dimensional EDM completion is NP-hard 40

2.6.5 Semidefinite relaxation of the low-dimensional EDM comple-
tion problem . 41

2.6.6 Duality of the semidefinite relaxation 43

2.6.7 Rank minimization heuristics for the EDM completion problem 44

3 Applications of Euclidean Distance Matrices 47

3.1 Sensor network localization . 47

3.1.1 Anchors and the Procrustes problem 48

3.1.2 Semidefinite relaxation of the SNL problem 51

3.1.3 Further transformations of the semidefinite relaxation of the
SNL problem . 53

3.1.4 The Biswas-Ye formulation 54

3.1.5 Unique localizability . 55

3.1.6 Obtaining sensor positions from the semidefinite relaxation . 56

3.2 Molecular conformation . 60

4 Facial Reduction for the Euclidean Distance Matrix Completion
Problem 62

4.1 Facial reduction in linear optimization 62

4.2 Facial reduction in semidefinite optimization 64

4.3 Single clique facial reduction . 65

4.3.1 An alternate proof . 67

4.4 Facial reduction algorithm overview 71

4.4.1 Facial reduction algorithm for a fixed embedding dimension 72

4.5 Single subset facial reduction . 72

viii

4.6 Disjoint subsets facial reduction . 73

4.7 Rigid intersection facial reduction 75

4.7.1 Rigid face intersection . 75

4.7.2 Rigid intersection . 78

4.8 Non-rigid intersection facial reduction 80

4.8.1 Non-rigid face intersection 81

4.8.2 Non-rigid intersection . 82

4.9 Level k non-rigid intersection facial reduction 84

4.9.1 Level k non-rigid face intersection 85

4.9.2 Level k non-rigid intersection 86

4.10 Constraint reduction . 86

4.10.1 Centring constraint reduction 86

4.10.2 Euclidean distance matrix completion 87

4.10.3 Distance constraint reduction 90

4.11 A semidefinite facial reduction algorithm for Euclidean distance ma-
trix completion . 92

4.12 Point representation . 92

4.12.1 Point rotation and subspace intersection 96

4.13 A point representation algorithm for Euclidean distance matrix com-
pletion . 97

5 Numerical Results 98

5.1 Sensor network localization . 98

5.1.1 Random problems . 98

5.1.2 The SNLSDPclique facial reduction algorithm 99

5.1.3 Numerical tests . 99

5.1.4 Noisy data and higher dimensional problems 108

5.1.5 Comparison with existing algorithms 110

5.2 Molecular conformation tests . 114

6 Conclusions and Future Work 119

6.1 Future work . 119

References 121

Index 134

ix

List of Tables

5.1 RigidCliqueUnion . 104

5.2 Point representation method with RigidCliqueUnion 105

5.3 RigidCliqueUnion and RigidNodeAbsorb 106

5.4 Point method with RigidCliqueUnion and RigidNodeAbsorb . . . 107

5.5 RigidCliqueUnion, RigidNodeAbsorb, and NonRigidCliqueUnion 108

5.6 Problems with noise and r = 2, 3 111

5.7 Point method on problems with noise and r = 2, 3 112

5.8 Point method on noiseless molecular conformation problems 116

5.9 Point method on noisy molecular conformation problems 117

x

List of Figures

4.1 Rigid intersection . 76

4.2 Non-rigid intersection . 80

5.1 Three dimensional plots of the 1RGS protein 118

xi

Chapter 1

Introduction

Measuring and studying the distances between objects in some collection is a fun-
damental geometric question of great importance in many scientific areas. The
forward computation is straightforward: Given a collection of n points, determine
the distances between every pair of those points. The result is

(
n
2

)
= 1

2
n(n − 1)

distances. We store the squares of the distances in an n-by-n symmetric matrix,
having zeros along its diagonal. Such a matrix is called a distance matrix, and when
the distance is computed using the Euclidean norm,

‖x‖2 =

(
r∑
i=1

x2
i

)1/2

, where x = (x1, . . . , xn) ∈ Rr,

this distance matrix is called a Euclidean distance matrix.

The reverse question asks to determine the location of the points in some col-
lection given only the distances between those points, or determine that it is not
possible to do so. An early reference studying this problem is Schoenberg (1935).
It is in this classic paper where the relationship between semidefinite matrices and
Euclidean distance matrices is first established: a matrix D is a Euclidean distance
matrix if and only if a certain linear map of D is a positive semidefinite matrix.
Moreover, factoring this semidefinite matrix then provides the locations of all the
points.

Euclidean distance matrices have always been interesting due to their broad
applicability in many areas. Diverse areas of scientific study work with large col-
lections of data, and are often interested in measuring this data in terms of the
distances between the points in the data. However, Euclidean distance matrices
have received increased attention lately for two main reasons.

First of all, there are some very important application areas that are currently
in need of ever better methods for using distance information to analyze data and
determine the positions of points in some low dimensional space. One important
application is sensor network localization. With the advancement of computer and
wireless technology, wireless sensors are becoming smaller, more computationally

1

capable, and more inexpensive, causing wireless sensor networks to become more
and more ubiquitous. Ad hoc wireless sensor networks can be used to efficiently
measure sound, temperature, smoke, vibrations, moisture, pressure, et cetera, in
a variety of environments. As these networks are ad hoc, it is important to be
able to determine the positions of the sensors after they have been (randomly)
placed in the environment. Distances between sensors can be measured, but only
between sensors that are within a certain range of communication. The power
required to perform computations on these sensors turns out to be much less than
the power required to communicate wirelessly with nearby sensors. Therefore, in
order to keep these sensors small and inexpensive, their communication range (or
radio range) is limited. This means that we will not be able to measure all pairwise
distances, allowing only partial inter-sensor distance information to be measured.
This partial distance information together with the positions of the anchor nodes
(sensors with known position) is then used to try to determine the positions of the
sensors. Although the Global Positioning System (GPS) can be used to accurately
determine positions, its limitations are that it is often too bulky, requires too much
power, and can only be used in an outside environment.

Another application of Euclidean distance matrices is in the study of proteins,
specifically protein folding and determining the shape, or conformation, of protein
molecules. By understanding the shape of proteins, we are better able to understand
how different drugs will interact with these molecules; this is especially important
in the area of computer-aided drug design. Interatomic distances can be measured
using nuclear magnetic resonance (NMR) techniques, but only between atoms in
the molecule that are within a limited range. The relative positions of the atoms can
then be determined from this partial distance information using Euclidean distance
matrix techniques. A distinguishing feature of the molecular conformation problem
over the sensor network localization problem is that are no anchored points – we
are only interested in the relative positions of the points.

Finally, we mention the application of multi-dimensional scaling in machine
learning and statistics. In machine learning, it is of great interest to determine if a
collection of data points can be placed in a lower dimensional space while retaining
distances between nearby points. The data can be viewed as residing on a low-
dimensional manifold in a high-dimensional space. The goal is to somehow unfold
this manifold to obtain the desired low dimensional realization, allowing for hidden
structure in the data to be revealed. Applications in this area are, for example,
hand-written character recognition and detecting facial expressions.

The second reason for the increased interest in the study of Euclidean distance
matrices is due to recent theoretical and algorithmic advances regarding semidefi-
nite matrix problems. We are just recently able to solve semidefinite optimization
problems efficiently following the recent discovery of interior-point methods for
semidefinite optimization; see, for example, Nesterov and Nemirovskii (1994), Al-
izadeh (1995), Vandenberghe and Boyd (1996), and Todd (2001). This theoretical
and computational advancement now allows us to easily compute solutions to Eu-
clidean distance matrix problems that were until recently, very difficult problems

2

to solve numerically. In addition to these algorithmic advances, there has also been
some very nice theoretical and algorithmic results discovered in the closely related
area of semidefinite matrix completion, most notably Grone et al. (1984) and John-
son et al. (1998). These theoretical and computational advancements in the area
of semidefinite matrix completion has therefore also led to a renewed interest in
Euclidean distance matrix problems, due to the close connection between these
two problems. However, it should be noted that, in general, the semidefinite ma-
trix completion is an easier problem than the low-dimensional Euclidean distance
matrix problems we consider here.

Before discussing the contributions of this thesis, we provide a literature review
of the main applied and theoretical areas related to our work.

1.1 Related work

The previous work within the scope of this thesis falls into five main categories:

1. distance geometry and Euclidean distance matrices;

2. graph realization and graph rigidity;

3. facial reduction;

4. sensor network localization;

5. molecular conformation.

Note that these categories are by no means disjoint, so we will focus on the main
papers from each topic. As the number of references in these areas is numerous,
the following does not comprise the complete list of references on these topics, but
instead aims to highlight the key references from each area.

1.1.1 Distance geometry and Euclidean distance matrices

The foundational papers in the area of Euclidean distance matrices are Schoenberg
(1935) and Young and Householder (1938). The topic was further developed with
the series of papers Gower (1982, 1984, 1985), Farebrother (1987), and Critchley
(1988). For papers on the Euclidean distance matrix completion problem and the
related semidefinite completion problem, see the classic paper on semidefinite com-
pletion Grone et al. (1984), and follow-up papers Bakonyi and Johnson (1995) and
Johnson and Tarazaga (1995); also see Laurent (2001) on the topic of the complex-
ity of these completion problems. More on the topic of uniqueness of Euclidean
distance matrix completions can be found in the papers Alfakih (2003, 2005). The
cone of Euclidean distance matrices and its geometry is described in, for example,

3

Glunt et al. (1990), Hayden et al. (1991), Tarazaga et al. (1996), Tarazaga (2005),
and Alfakih (2006b). Using semidefinite optimization to solve Euclidean distance
matrix problems is studied in the papers Alfakih et al. (1999) and Al-Homidan and
Wolkowicz (2005). Further theoretical results are given in Alfakih and Wolkow-
icz (2002) and Alfakih (2006a). Books and survey papers containing a treatment
of Euclidean distance matrices include, for example, Blumenthal (1970), Laurent
(1998), Dattorro (2008), and most recently Alfakih et al. (2009). The topic of rank
minimization for Euclidean distance matrix problems is discussed in, for example,
Fazel (2002), Fazel et al. (2003), Recht et al. (2008a), Candès and Recht (2008),
Recht et al. (2008b), Candès and Plan (2009).

1.1.2 Graph realization and graph rigidity

The complexity of graph realization in a fixed dimension was determined to be
NP-hard by Saxe (1979) and Yemini (1979). For studies on graph rigidity, see,
for example, Hendrickson (1992), Hendrickson (1995), Jackson and Jordán (2005),
Connelly (2005), Belk (2007), Belk and Connelly (2007), Alfakih (2000, 2001, 2007),
and the references therein. Graph rigidity for sensor network localization is studied
as graph rigidity with some nodes being grounded or anchored; see, for example,
Eren et al. (2004) and So and Ye (2007). Semidefinite optimization techniques
have also been applied to graph realization and graph rigidity problems; see, for
example, Barvinok (1995), So and Ye (2006), and the PhD thesis So (2007).

1.1.3 Facial reduction

Early papers studying faces of convex cones are, for example, Barker (1973), Barker
and Carlson (1975), and Barker (1978). An excellent general reference for faces
of convex cones is Schneider (1993). The use of facial reduction as a regular-
ization technique for convex optimization problems was pioneered in the papers
Borwein and Wolkowicz (1981a,b,c). Moreover, (Borwein and Wolkowicz, 1981a,
Section 7) includes an early treatment of facial reduction for semidefinite optimiza-
tion problems. Facial reduction was successfully used in Zhao et al. (1998) for
solving semidefinite relaxations of the quadratic assignment and graph partitioning
problems. Facial reduction was later studied by Pataki (2000), and applied to gen-
eral semidefinite optimization problems by Ramana et al. (1997). Facial reduction
techniques have recently resurfaced in a variety of applications; in addition to our
own work, see, for example, Waki and Muramatsu (2009a,b).

1.1.4 Sensor network localization

While semidefinite relaxations were discussed earlier in Alfakih et al. (1999) for
Euclidean distance matrix problems, the first semidefinite relaxations specialized
for the sensor network localization problem were proposed by Doherty et al. (2001).

4

The paper by Biswas and Ye (2004) followed with what is now called the Biswas-
Ye semidefinite relaxation of sensor network localization problem. As problems
with only a few hundred sensors could be solved directly using the Biswas-Ye
relaxation, Jin (2005) and Carter et al. (2006) proposed the scalable SpaseLoc
semidefinite-based build-up algorithm which solves small subproblems using the
Biswas-Ye semidefinite relaxation, locating a few sensors at a time. In the follow-
up paper Biswas et al. (2006) propose regularization and refinement techniques for
handling noisy problems using the Biswas-Ye semidefinite relaxation. In order to
handle larger problems, a distributed method was proposed in Biswas and Ye (2006)
which clusters points together in small groups, solves the smaller subproblems, then
stitches the clusters together; see also the PhD thesis Biswas (2007). To allow the
solution of larger problems, Wang et al. (2008) proposed further relaxations of the
sensor network localization problem in which they do not insist that the full n-by-n
matrix of the Biswas-Ye relaxation be positive semidefinite, but rather only that
certain submatrices of this matrix be positive semidefinite; the most successful of
these further relaxations is the so-called edge-based SDP relaxation, or ESDP. A
noise-aware robust version of the ESDP relaxation called ρ-ESDP is proposed by
Pong and Tseng (2010) and which is solved with their Log-barrier Penalty Coor-
dinate Gradient Descent (LPCGD) method. Using techniques from Fukuda et al.
(2001), it is shown in Kim et al. (2009a) how to form an equivalent sparse ver-
sion of the full Biswas-Ye relaxation, called SFSDP. The sparsity in the SFSDP
formulation can then be exploited by a semidefinite optimization solver, allowing
the solution of noisy instances of the sensor network localization problem with up
to 18000 sensors and 2000 anchors to high accuracy in under ten minutes; see Kim
et al. (2009b). Most recently, we have shown in Krislock and Wolkowicz (2010)
how to use facial reduction to solve a semidefinite relaxation of the sensor network
localization problem. Our algorithm is able to solve noiseless problems with up to
100,000 sensors and 4 anchors to high accuracy in under six minutes on a laptop
computer; see Table 5.3.

Other relaxations have also been studied; Tseng (2007) considers a second-order
cone (SOC) relaxation of the sensor network localization problem, while Nie (2009)
studies the sum-of-squares (SOS) relaxation of this problem.

For more applied approaches and general heuristics, see, for example, Bulusu
et al. (2000), Savvides et al. (2001), Moore et al. (2004), Megerian et al. (2005),
Costa et al. (2006), Nawaz (2008), Yang et al. (2009), Bruck et al. (2009), Stoyanova
et al. (2009), and Cassioli (2009). A older survey paper on wireless sensor networks
is Akyildiz et al. (2002); for a recent book on wireless ad hoc and sensor network,
see Li (2008).

The complexity of the sensor network localization problem is discussed in Aspnes
et al. (2004) and Aspnes et al. (2006). References for the single sensor localization
problem are, for example, Beck et al. (2008a,b).

5

1.1.5 Molecular conformation

An early algorithmic treatment of molecular conformation is Havel et al. (1983) in
which they give their bound embedding algorithm EMBED. This paper was then
followed by the book Crippen and Havel (1988); a review paper Crippen (1991)
provides an update three years after the publication of this book. A personal
historical perspective is given in Havel (2003).

Other algorithmic developments followed, including: a divide-and-conquer algo-
rithm called ABBIE based on identifying rigid substructures Hendrickson (1990);
an alternating projection approach Glunt et al. (1993); a global smoothing con-
tinuation code called DGSOL Moré and Wu (1997, 1999); a geometric build-up
algorithm Dong and Wu (2002, 2003), Wu and Wu (2007), Wu et al. (2008); an
extended recursive geometric build-up algorithm dos Santos Carvalho et al. (2008);
a difference of convex functions (d.c.) optimization algorithm An and Tao (2003);
a method based on rank-reducing perturbations of the distance matrix that main-
tain desired structures Emiris and Nikitopoulos (2005); an algorithm for solving
a distance matrix based, large-scale, bound constrained, non-convex optimization
problem called StrainMin Grooms et al. (2009).

Recently, semidefinite optimization approaches to the molecular conformation
problem have been studied in Leung and Toh (2008) and Biswas et al. (2008), for
example; see also the PhD thesis Biswas (2007).

1.2 Contributions of this thesis

At this time, it is still very difficult to solve large-scale semidefinite optimization
problems. For this reason, we can also only directly solve Euclidean distance matrix
problems that are of limited size. However, the applications pull us in the other
direction, asking us to be able to solve Euclidean distance matrix problems of
larger and larger size. To be able to solve problems of such large size requires special
techniques. We show in this thesis that the technique of semidefinite facial reduction
allows us to do just that. We will see that with facial reduction, we are able
to transform the semidefinite optimization problems corresponding to Euclidean
distance matrix problems into equivalent problems requiring much fewer variables
and constraints. With the facial reduction algorithm we have developed in this
work, we are able to exactly solve many Euclidean distance matrix completion
problems that are of very large size, up to a hundred-thousand points, in just a
few minutes on a laptop computer, without the need of a semidefinite optimization
solver. For problems with a low level of noise, our algorithm outperforms existing
algorithms in terms of both CPU time and accuracy. Moreover, not only is the
Euclidean distance matrix facial reduction theory we have developed in this work a
very nice set of theoretical results, but it also has many far reaching consequences
for the various applications we have mentioned above.

6

Before continuing, we mention that the Euclidean distance matrix problems we
are solving are in the class of NP-hard problems. Therefore, we do not expect
to be able to efficiently solve all instances of this problem. However, we found
that our algorithm was able to solve most of the large problems we tested it on,
very efficiently. As the Euclidean distance matrix facial reduction theory we have
developed here has opened up many questions, this is just the beginning of a fruitful
research project. Although we do not give an answer to all questions here, this work
is ongoing and we are very excited by all the possibilities it brings.

7

Chapter 2

Faces and Euclidean Distance
Matrices

We begin by defining the important concepts and terminology we will use. We also
include many basic results which we will frequently use in later sections. Proofs of
these results have been included for completeness.

2.1 Euclidean spaces

We work with real finite dimensional Euclidean spaces E equipped with an inner-
product 〈 · , · 〉 : E× E→ R, such as:

• the space of real n-vectors, Rn, with

〈x, y〉 := xTy =
n∑
i=1

xiyi;

• the space of real m-by-n matrices, Rm×n, with

〈X, Y 〉 := trace(XTY) =
m∑
i=1

n∑
j=1

XijYij;

• the space of n-by-n real symmetric matrices, Sn :=
{
X ∈ Rn×n : X = XT

}
,

with

〈X, Y 〉 := trace(XY) =
n∑

i,j=1

XijYij.

The norm of x ∈ E is defined as ‖x‖ :=
√
〈x, x〉. In Rn, we have the Euclidean

norm, ‖x‖2 :=
√
xTx; in Rm×n (or Sn), we have the Frobenius norm, ‖X‖F :=√

trace(XTX).

8

2.2 Linear maps

We use the Matlab notation 1:n := {1, . . . , n} and[
A;B

]
:=

[
A
B

]
.

For a matrix A ∈ Rm×n and sets S ⊆ 1:m and T ⊆ 1:n, we use the notation A[S, T]
to represent the submatrix of A formed by the rows indexed by S and columns
indexed by T . We define:

A[:, T] := A[1:m,T];

A[S, :] := A[S, 1:n];

A[S] := A[S, S].

2.2.1 The adjoint and the fundamental subspaces

Let E and Y be Euclidean spaces equipped with the inner-products 〈 · , · 〉E and
〈 · , · 〉Y, respectively. The adjoint of a linear map A : E → Y is the unique linear
map A∗ : Y→ E satisfying

〈x,A∗y〉E = 〈Ax, y〉Y , for all x ∈ E and y ∈ Y.

For ease of notation, we will often omit the subscripts on the inner-products as they
are typically clear from the context. A linear map A : E→ E is called self-adjoint
if A∗ = A.

We use range(A) and null(A) to denote the range space and null space of a linear
map A : E → Y, respectively. These fundamental subspaces satisfy the following
well-known duality relationships.

Theorem 2.1. Let E and Y be Euclidean spaces, and A : E→ Y be linear. Then

range(A)⊥ = null(A∗) and null(A)⊥ = range(A∗).

Proof. First we note that A∗y = 0 if and only if

〈Ax, y〉 = 〈x,A∗y〉 = 0, for all x ∈ E.

Therefore, range(A)⊥ = null(A∗). To show that null(A)⊥ = range(A∗), we will show
that the equivalent statement null(A) = range(A∗)⊥ holds. This is accomplished
by noting that Ax = 0 if and only if

〈x,A∗y〉 = 〈Ax, y〉 = 0, for all y ∈ Y.

The rank of a linear map A : E → Y is defined as rank(A) := dim(range(A)).
By Theorem 2.1, rank(A) = rank(A∗) implies, and follows from, the Rank-Nullity
Theorem: dim(null(A)) + rank(A) = dim(E).

9

2.2.2 Orthogonal projections

A linear map P : E → E is an orthogonal projection if P ∗ = P and P 2 = P . If
P : E→ E is an orthogonal projection, then I−P is also an orthogonal projection;
P projects x ∈ E orthogonally onto the subspace range(P) and I−P projects x ∈ E
orthogonally onto the subspace range(I − P) = range(P)⊥ = null(P). The proof
of these facts follow easily from the observation that if P : E→ E is an orthogonal
projection, then

〈(I − P)x, Py〉 = 〈P (I − P)x, y〉 =
〈
(P − P 2)x, y

〉
= 0, for all x, y ∈ E.

Moreover, P 2 = P implies that

range(P) = {x ∈ E : Px = x} .

We now show that an orthogonal projection onto a given subspace is unique.

Proposition 2.2. Let V be a subspace of a Euclidean space E. Then there is a
unique orthogonal projection P : E→ E such that range(P) = V .

Proof. Suppose P1 and P2 are orthogonal projections such that

range(P1) = range(P2) = V.

Then, for i = 1, 2,

V = {v ∈ E : Piv = v} and V ⊥ = null(Pi).

Thus, for all x = v + w ∈ V ⊕ V ⊥ = E, we have

P1x = P1(v + w) = v = P2(v + w) = P2x,

so P1 = P2.

2.2.3 The Moore-Penrose pseudoinverse

The Moore-Penrose pseudoinverse of a linear map A : E → Y is defined as the
linear map A† : Y→ E that satisfies the Penrose conditions :

AA† = (AA†)∗ (2.1a)

A†A = (A†A)∗ (2.1b)

AA†A = A (2.1c)

A†AA† = A†. (2.1d)

It is well-known that every linear map A has a singular value decomposition

A(·) =
r∑
i=1

σi 〈vi, ·〉ui,

10

where rank(A) = r, {u1, . . . , ur} ⊆ Y is an orthonormal basis for the subspace
range(A), and {v1, . . . , vr} ⊆ E is an orthonormal basis for the subspace range(A∗);
see, for example Golub and Van Loan (1996). It is easy to verify that the linear
map given by

A†(·) =
r∑
i=1

1

σi
〈ui, ·〉 vi

satisfies the Penrose conditions (2.1). For example, we have

AA†Ax = A

(
r∑
j=1

1

σj
〈uj, Ax〉 vj

)

= A

(
r∑
j=1

1

σj
σj 〈vj, x〉 vj

)

= A

(
r∑
j=1

〈vj, x〉 vj

)

=
r∑
i=1

σi 〈vi, x〉ui

= Ax,

for all x ∈ E, so AA†A = A.

We will prove below in Theorem 2.3 that the Penrose conditions are uniquely
satisfied, but first we give a few implications of these conditions. If P = AA†,
then P = P ∗ and P 2 = AA†AA† = AA† = P . Therefore, AA† is an orthogonal
projection:

• AA† projects orthogonally onto the subspace range(AA†) = range(A);

• I − AA† projects orthogonally onto the subspace range(A)⊥ = null(A∗).

Similarly, A†A is an orthogonal projection:

• I − A†A projects orthogonally onto the subspace range(I − A†A) = null(A);

• A†A projects orthogonally onto the subspace null(A)⊥ = range(A∗).

The proofs for all these facts follow easily from the above Penrose conditions.

Theorem 2.3 ((Björck, 1996, Theorem 1.2.11)). Let E and Y be Euclidean spaces,
and A : E → Y be linear. Then the Penrose conditions (2.1) are satisfied by a
unique linear map from Y to E.

11

Proof. We have already seen that the Penrose conditions (2.1) are satisfied by at
least one linear map. Now suppose that there are two linear maps Xi : Y → E,
i = 1, 2, which satisfy the Penrose conditions (2.1). From the above discussion, we
have that AX1, AX2, X1A, and X2A are orthogonal projections. By uniqueness of
orthogonal projections (Proposition 2.2), we have that

AX1 = AX2 and X1A = X2A.

This fact together with condition (2.1d) implies that

X1 = X1AX1 = X1AX2 = X2AX2 = X2.

We now relate the four fundamental subspaces of A† and A. Note that, by
Theorem 2.3, it is easy to show that (A†)∗ = (A∗)†, so we can omit the brackets
without ambiguity.

Proposition 2.4. Let E and Y be Euclidean spaces, and A : E→ Y be linear. Then

range(A†) = range(A∗), null(A†∗) = null(A), (2.2)

range(A†∗) = range(A), null(A†) = null(A∗). (2.3)

Proof. We first prove (2.2). Let v = A†y ∈ range(A†). Then

v = A†y = A†AA†y ∈ range(A∗),

since A†A is the orthogonal projection onto range(A∗). Conversely, if v ∈ range(A∗),
then v = A†Av ∈ range(A†). Therefore, range(A†) = range(A∗), from which
null(A†∗) = null(A) immediately follows.

To prove (2.3), we first let y ∈ null(A†). Then, projecting y onto null(A∗), we
obtain

(I − AA†)y = y − AA†y = y,

since A†y = 0. Therefore, y ∈ null(A∗). Conversely, let y ∈ null(A∗). Then,
projecting y onto null(A∗), we obtain

y = (I − AA†)y = y − AA†y,

so AA†y = 0. Therefore, A†y = A†AA†y = 0, so y ∈ null(A†). Therefore,
null(A†) = null(A∗), from which range(A†∗) = range(A) immediately follows.

The following result describes the bijective property of A and A† between the
subspaces range(A†) and range(A).

Proposition 2.5. Let E and Y be Euclidean spaces, and A : E → Y be linear.
Then A : range(A†)→ range(A) is a bijection and A† : range(A)→ range(A†) is its
inverse.

12

Proof. To show thatA : range(A†)→ range(A) is bijective, we first let y ∈ range(A).
Then y = Ax, for some x = u + v ∈ null(A) ⊕ null(A)⊥ = E. Therefore,
y = A(u + v) = Av. Since v ∈ null(A)⊥ = range(A∗) = range(A†), we have
that y ∈ Arange(A†). Therefore, range(A) ⊆ Arange(A†), so A maps range(A†)
onto range(A). Now suppose that Ax = Ay for some x, y ∈ range(A†) = null(A)⊥.
Then x− y ∈ null(A), so

‖x− y‖2 = 〈x− y, x− y〉 = 〈x, x− y〉 − 〈y, x− y〉 = 0,

implying that x = y. Therefore, A : range(A†) → range(A) is also injective. To
complete the proof, we must simply show that A† : range(A) → range(A†) is the
inverse of the bijection A : range(A†)→ range(A). To this end, we let x ∈ range(A†)
and y := Ax. Since A†A is the orthogonal projection onto range(A∗) = range(A†),
we have A†y = A†Ax = x, completing the proof.

We will find the following property of the Moore-Penrose pseudoinverse to be
of great use.

Proposition 2.6. Let E and Y be Euclidean spaces, A : E → Y be linear, x ∈ E,
and b ∈ Y. Then

Ax = b ⇔ b ∈ range(A) and x ∈ A†b+ null(A).

Proof. First we suppose that Ax = b. Clearly we have b ∈ range(A). Since AA† is
the orthogonal projection onto range(A), we haveAA†b = b. Therefore, Ax = AA†b,
so A(x−A†b) = 0, implying that x−A†b ∈ null(A). Thus, x ∈ A†b+ null(A). Now
suppose that b ∈ range(A) and x = A†b + u, for some u ∈ null(A). Again we have
AA†b = b, so Ax = AA†b+ Au = b.

Another well-known property of the Moore-Penrose pseudoinverse is that it gives
us a formula for the minimum norm least-squares solution of a linear system.

Proposition 2.7. Let E and Y be Euclidean spaces, A : E → Y be linear, b ∈ Y,
and

S := argmin {‖Ax− b‖ : x ∈ E} .

Then x̄ := A†b is the unique minimizer of

min {‖x‖ : x ∈ S} .

Proof. First we will show that x̄ = A†b ∈ S. As is well-known, x minimizes ‖Ax−b‖
if and only if x satisfies the normal equations

A∗(b− Ax) = 0. (2.4)

To show that x̄ satisfies (2.4), we simply observe that

b− AA†b = (I − AA†)b ∈ null(A∗),

13

since I − AA† is the orthogonal projection onto null(A∗). To show that x̄ is the
minimum norm least-squares solution, we begin by letting x ∈ S and noting that
x = x̄ + v, for some v ∈ null(A∗A). First we observe that Av = 0; otherwise, we
have the contradiction

0 6= ‖Av‖2 = 〈Av,Av〉 = 〈v, A∗Av〉 = 0.

Note that x̄ = A†b ∈ range(A†) = range(A∗). Thus, x̄ = A∗y, for some y ∈ Y, so
we have

‖x‖2 = ‖x̄+ v‖2

= ‖x̄‖2 + 2 〈x̄, v〉+ ‖v‖2

= ‖x̄‖2 + 2 〈A∗y, v〉+ ‖v‖2

= ‖x̄‖2 + 2 〈y, Av〉+ ‖v‖2

= ‖x̄‖2 + 2 〈y, 0〉+ ‖v‖2

= ‖x̄‖2 + ‖v‖2

≥ ‖x̄‖2.

Therefore, ‖x̄‖ ≤ ‖x‖ for all x ∈ S, and this inequality is strict if and only if
x 6= x̄.

For further information on this topic of generalized inverses, a classic reference
is Ben-Israel and Greville (2003).

2.3 Convexity and topology

Let E be a Euclidean space. A set A ⊆ E is affine if λx + (1 − λ)y ∈ A, for all
x, y ∈ A and λ ∈ R. A set S ⊆ E is convex if λx+(1−λ)y ∈ S, for all x, y ∈ S and
0 ≤ λ ≤ 1. A function f : E→ R is convex if f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y),
for all x, y ∈ E and 0 ≤ λ ≤ 1.

The affine hull of a set S ⊆ E is the smallest affine set in E containing S, and
is denoted aff(S); that is,

aff(S) :=
⋂

S⊆A⊆E
A affine

A.

The unit ball in E is defined as

B := {x ∈ E : ‖x‖ ≤ 1} .

The ball around x ∈ E with radius ε > 0 is then given by

x+ εB = {y ∈ E : ‖x− y‖ ≤ ε} .

14

The relative interior of a convex set S ⊆ E is given by

relint(S) := {x ∈ aff(S) : (x+ εB) ∩ aff(S) ⊆ S, for some ε > 0} .

The core of a set S is the set of points x ∈ S set such that you can move in every
direction d ∈ E slightly and remain in the set. It is known that for convex S ⊆ E
that core(S) = int(S); see, for example, Borwein and Lewis (2000). The following
well-known theorem states that for convex S ⊆ E we have relint(S) = relcore(S);
that is, the relative interior of a convex set S ⊆ E is characterized by the set of
points x ∈ S such that, for all y ∈ S, you can move in the direction d = x − y
slightly and remain in the set.

Theorem 2.8 ((Rockafellar, 1970, Theorem 6.4)). Let S ⊆ E be a convex set.
Then relint(S) = {x ∈ S : ∀y ∈ S,∃µ > 1 such that µx+ (1− µ)y ∈ S}.

The following is another theorem from the classic book by Rockafellar that we
will find useful. This theorem gives us a necessary and sufficient condition for the
existence of a nontrivial supporting hyperplane to a set containing a subset of the
set.

Theorem 2.9 ((Rockafellar, 1970, Theorem 11.6)). Let S ⊆ F ⊆ E such that S
and F are convex, and S 6= ∅. Then there exists a supporting hyperplane H to F
such that S ⊆ H and F * H if and only if S ∩ relint(F) = ∅.

2.4 Cones and faces

Let E be a Euclidean space, and let K ⊆ E. We say that K is a cone if R+K = K,
where

R+K := {tx : t ∈ R+, x ∈ K} .

The dual cone of an arbitrary set K ⊆ E is defined as

K∗ := {y ∈ E : 〈x, y〉 ≥ 0,∀x ∈ K} .

The dual cone K∗ is always a closed convex cone. A cone K ⊆ E is called self-dual
if there exists an inner-product 〈 · , · 〉 under which K∗ = K. A well-known result
is that K = K∗∗ if and only if K is a closed convex cone.

We denote the sets of positive semidefinite and positive definite matrices by Sn+
and Sn++, respectively. Thus,

Sn+ :=
{
X ∈ Sn : vTXv ≥ 0, ∀v ∈ Rn

}
, and

Sn++ :=
{
X ∈ Sn : vTXv > 0, ∀v ∈ Rn s.t. v 6= 0

}
.

15

We say that X � Y (resp. X � Y) if X − Y ∈ Sn+ (resp. X − Y ∈ Sn++); this is
known as the Löwner partial order. Similarly, we denote the nonnegative orthant
and the positive orthant by

Rn
+ := {x ∈ Rn : x ≥ 0} , and

Rn
++ := {x ∈ Rn : x > 0} ,

respectively. It is well-known that the cones Sn+ and Rn
+ are self-dual; see, for ex-

ample, Krislock (2003) for proofs of these results. Classic references on the topic of
cones in mathematical optimization are the book Berman (1973) and the preceding
paper Berman and Ben-Israel (1971).

2.4.1 Faces of convex cones

If K ⊆ E is a convex cone, we say that F is a face of K Ramana et al. (1997);
Rockafellar (1970) (denoted F E K) if F is a convex cone, F ⊆ K, and

x, y ∈ K and x+ y ∈ F ⇒ x, y ∈ F.

In addition, if F E K and F 6= K, then we write F C K.

For arbitrary subsets F and K of E such that F ⊆ K, we define the conjugate
face of F (with respect to K) as

F c := F⊥ ∩K∗.

We now show that the conjugate face F c is always a face of the dual cone K∗.

Proposition 2.10. Let F and K be arbitrary subsets of E. If F ⊆ K, then
F c E K∗.

Proof. Clearly F c ⊆ K∗, and since F c is the intersection of convex cones, F c is a
convex cone. To show that F c E K∗, let x, y ∈ K∗ such that x + y ∈ F c. Thus, if
z ∈ F ⊆ K, then 〈x, z〉 ≥ 0, 〈y, z〉 ≥ 0, and

0 = 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 .

Therefore, 〈x, z〉 = 〈y, z〉 = 0, for all z ∈ F , so x, y ∈ F⊥. Finally, since x, y ∈ K∗,
we have x, y ∈ F c. Therefore, F c E K∗.

A face F E K is exposed if there exists φ ∈ K∗ such that

F = {x ∈ K : 〈φ, x〉 = 0} = K ∩ {φ}⊥ .

A cone K is facially exposed if every face F E K is exposed. The next result shows
that each point in the conjugate face F c defines an exposed face that contains the
face F .

16

Proposition 2.11. Let K ⊆ E be a convex cone. If F E K and φ ∈ F c, then
F E K ∩ {φ}⊥ E K.

Proof. First observe that F ⊆ K and φ ∈ F⊥ implies that F ⊆ K ∩ {φ}⊥. Clearly,
K ∩ {φ}⊥ is a convex cone. Suppose x, y ∈ K ∩ {φ}⊥ such that x + y ∈ F . Since
x, y ∈ K and F E K, we have x, y ∈ F . Therefore, F E K ∩ {φ}⊥.

Next, we observe that K ∩ {φ}⊥ ⊆ K, and suppose x, y ∈ K such that x+ y ∈
K ∩ {φ}⊥. Then φ ∈ K∗ implies that 〈φ, x〉 ≥ 0 and 〈φ, y〉 ≥ 0. Moreover,

0 = 〈φ, x+ y〉 = 〈φ, x〉+ 〈φ, y〉 ,

so 〈φ, x〉 = 〈φ, y〉 = 0. Therefore, x, y ∈ K∩{φ}⊥, implying thatK∩{φ}⊥ E K.

The minimal face of a convex cone K containing a set S ⊆ K is denoted face(S);
that is,

face(S) :=
⋂

S⊆FEK

F.

Usually we do not specify explicitly the cone K being considered when discussing
the minimal face of a set S since it is often clear from the context. The following
proposition shows that face(S) is indeed a face of K.

Proposition 2.12. Let K ⊆ E be a convex cone. If S ⊆ K, then face(S) E K.

Proof. First, we note that face(S) is the intersection of convex cones in K, so
face(S) is a convex cone in K. To show that face(S) E K, let x, y ∈ K such that
x + y ∈ face(S). Let F E K such that S ⊆ F . Then x + y ∈ F , so x, y ∈ F .
Therefore, x, y ∈ F , for all F E K such that S ⊆ F , so x, y ∈ face(S). Thus,
face(S) E K.

Using Theorem 2.8 and Theorem 2.9, we now give a proof for a useful result
that provides a simple condition for when face(S) = F .

Proposition 2.13. Let K ⊆ E be a convex cone and let S ⊆ F E K. Then:

1. if S ∩ relint(F) 6= ∅, then face(S) = F ;

2. if S is nonempty and convex, and face(S) = F , then S ∩ relint(F) 6= ∅.

Proof. Since S ⊆ F E K, we have face(S) ⊆ F . Conversely, let x ∈ F and
y ∈ S ∩ relint(F). Then, by Theorem 2.8, (1− µ)x+ µy ∈ F , for some µ > 1. Let
z := (1− µ)x+ µy. Since y ∈ face(S), µ is positive, and face(S) is a cone, we have
µy ∈ face(S); that is

z + (µ− 1)x ∈ face(S).

Since x ∈ K, µ − 1 is positive, and K is a cone, we have (µ − 1)x ∈ K. Since
z, (µ − 1)x ∈ K and face(S) E K, we have z, (µ − 1)x ∈ face(S). Finally, since
face(S) is a cone, we have x ∈ face(S). Thus, F ⊆ face(S).

17

Now suppose S is convex and face(S) = F . The following argument is inspired
by an argument in the proof of (Schneider, 1993, Theorem 2.1.2). Suppose, for the
sake of contradiction, that S ∩ relint(F) = ∅. Then, by Theorem 2.9, there exists
a supporting hyperplane H to F containing S, but not containing F . Since F is a
cone, we may assume that

H = {x ∈ E : 〈φ, x〉 = 0} ,

for some φ ∈ E. That is, 〈φ, x〉 = 0, for all x ∈ S, 〈φ, y〉 ≥ 0, for all y ∈ F , and
there exists ȳ ∈ F such that 〈φ, ȳ〉 > 0. As in the proof of Proposition 2.11, we
can show that F ∩ H E K. Since S ⊆ F ∩ H, we have that face(S) ⊆ F ∩ H.
But face(S) = F then implies that F ⊆ F ∩H, contradicting the fact that F * H.
Therefore, S ∩ relint(F) 6= ∅.

2.4.2 A face of the semidefinite cone

We will now give an example of a face of the semidefinite cone, and give a few of
its properties. First we prove a useful lemma.

Lemma 2.14. Let U ∈ Rn×t be an arbitrary matrix. Then:

1. Y ∈ USt+UT if and only if Y � 0 and range(Y) ⊆ range(U);

2. if U is full column rank, then Y ∈ USt++U
T if and only if Y � 0 and

range(Y) = range(U).

Proof. We prove each result in order.

1. If Y ∈ USt+UT , then Y � 0 and range(Y) ⊆ range(U) clearly holds. Now
suppose that Y � 0 and range(Y) ⊆ range(U). Since Y � 0, it is well-
known that there exists a unique positive semidefinite square root Y 1/2 of
Y . Moreover, range(Y 1/2) = range(Y), so there exists Φ ∈ Rt×n such that
Y 1/2 = UΦ. Thus, Y = UZUT , where Z := ΦΦT ∈ St+, from which we
conclude that Y ∈ USt+UT .

2. Suppose that U is full column rank. Let Y = UZUT ∈ USt++U
T . Then

Y � 0 and range(Y) ⊆ range(U) clearly hold. On the other hand, suppose
v = Ux ∈ range(U) and let z ∈ Rt such that UT z = Z−1x; such a z exists
since rank(UT) = rank(U) = t implies that range(UT) = Rt. Therefore, v =
Ux = UZUT z = Y z ∈ range(Y), from which we conclude that range(Y) =
range(U).

Now suppose that Y � 0 and range(Y) = range(U). Then, U = Y V for
some V ∈ Rn×t. Moreover, from Item 1 we have that Y = UZUT , for some
Z ∈ St+. Thus, U = UZUTV . Therefore, rank(Z) ≥ rank(U) = t, implying
that Z ∈ St++. Thus, Y ∈ USt++U

T .

18

Proposition 2.15. Let Q =
[
U V

]
∈ Rn×n be orthogonal, and let

F := USt+UT =

{
Q

[
B 0
0 0

]
QT : B ∈ St+

}
.

Then:

1. F E Sn+;

2. F =
{
X ∈ Sn+ : range(X) ⊆ range(U)

}
=
{
X ∈ Sn+ : range(V) ⊆ null(X)

}
;

3. relint(F) = USt++U
T =

{
X ∈ Sn+ : range(X) = range(U)

}
;

4. F c = V Sn−t+ V T =

{
Q

[
0 0
0 B

]
QT : B ∈ Sn−t+

}
;

5. F c =
{
Y ∈ Sn+ : range(Y) ⊆ range(V)

}
=
{
Y ∈ Sn+ : range(U) ⊆ null(Y)

}
;

6. relint(F c) = V Sn−t++ V
T =

{
Y ∈ Sn+ : range(Y) = range(V)

}
;

7. F E Sn+ ∩ {Y }
⊥, for all Y ∈ F c; F = Sn+ ∩ {Y }

⊥, for all Y ∈ relint(F c);

8. F c E Sn+ ∩ {X}
⊥ for all X ∈ F ; F c = Sn+ ∩ {X}

⊥, for all X ∈ relint(F).

Proof. We prove each result in order.

1. Observe that F is a convex cone contained in Sn+. Now suppose that X, Y ∈

Sn+ such that X + Y ∈ F . Then X + Y = Q

[
B 0
0 0

]
QT , for some B ∈ St+.

Then

QTXQ+QTY Q =

[
B 0
0 0

]
,

and QTXQ,QTY Q � 0 implies that

QTXQ =

[
Bx 0
0 0

]
and QTY Q =

[
By 0
0 0

]
,

for some Bx, By ∈ St+. Therefore, X, Y ∈ F , so F E Sn+.

2. The first equality follows directly from Lemma 2.14. The second equality
follows from the fact that range(X) ⊆ range(U) if and only if range(U)⊥ ⊆
range(X)⊥, and that range(U)⊥ = range(V) and range(X)⊥ = null(X).

3. Suppose X = UΣUT ∈ relint(F). Let Y = UUT . Then Y ∈ F , so by
Theorem 2.8, there exists some µ > 1 such that (1−µ)Y +µX ∈ F . Therefore,
there exists Z ∈ St+ such that

UZUT = (1− µ)Y + µX = U [(1− µ)I + µΣ]UT .

19

Since UTU = I, we have Z = (1− µ)I + µΣ; solving for Σ, we get

Σ =
1

µ
Z +

µ− 1

µ
I ∈ Sn++.

Therefore, X ∈ USt++U
T . Since U has full column rank, by Lemma 2.14, we

have that range(X) = range(U).

Conversely, suppose X ∈ Sn+ such that range(X) = range(U). Since U has full
column rank, by Lemma 2.14, we have that X = UΣUT for some Σ ∈ St++.
To show X ∈ relint(F), we can show that, for all Y ∈ F , there exists some
µ > 1 such that (1 − µ)Y + µX ∈ F . To this end, we let Y = UΦUT ∈ F .
Since St++ = int(St+), Σ ∈ St++, and Φ ∈ St+, we have that there exists some
µ > 1 such that (1− µ)Φ + µΣ ∈ St+. Therefore,

(1− µ)Y + µX = U [(1− µ)Φ + µΣ]UT ∈ USt+UT = F.

Thus, we have X ∈ relint(F).

4. We first let Y = V ΦV T ∈ V Sn−t+ V T . To show that Y ∈ F c = F⊥ ∩ Sn+, we
let X = UΣUT ∈ F . Observe that XY = 0 since Q orthogonal implies that
UTV = 0. Thus, 〈X, Y 〉 = 0 for all X ∈ F . Since Y � 0 clearly holds, we
conclude that Y ∈ F c. To show the other direction, let Y ∈ F c. Then〈

Y, UΣUT
〉

=
〈
UTY U,Σ

〉
= 0, for all Σ ∈ St+.

In particular, if Σ = I, then we conclude trace(UTY U) = 0. Therefore,

‖UTY 1/2‖2
F =

〈
UTY 1/2, UTY 1/2

〉
= trace(UTY U) = 0,

implying that UTY 1/2 = 0. Since

null(UT) = range(U)⊥ = range(V),

we have Y 1/2 = VΨ, for some Ψ ∈ R(n−t)×n. Therefore, Y = V ΦV T , where
Φ := ΨΨT ∈ Sn−t+ . Thus, Y ∈ V Sn−t+ V T , as required.

5. Follows as in the proof of item 2.

6. Follows as in the proof of item 3.

7. If Y ∈ F c, then F E Sn+ ∩ {Y }
⊥ follows from Proposition 2.11. Suppose

Y = V ΦV T ∈ relint(F c). If X = UΣUT ∈ F , then XY = 0 since UTV =
0. Thus, X ∈ Sn+ ∩ {Y }

⊥. Conversely, suppose X ∈ Sn+ ∩ {Y }
⊥. Then

V ΦV TX = Y X = 0. Therefore, V TX = 0 since V TV = I and Φ � 0. Thus,
range(X) ⊆ null(V T) = range(U). Therefore, by Item 2, we have X ∈ F , as
required.

8. Follows as in the proof of item 7.

20

2.4.3 Semidefinite facial representation theorem

We now present the following well-known representation theorem for faces of the
semidefinite cone. Here we show that the example given in Proposition 2.15 gives
us the general form of all faces of the semidefinite cone. First we prove a lemma
which allows us to represent faces of the semidefinite cone with matrices not having
orthogonal columns.

Lemma 2.16. Let U, Ū ∈ Rn×t such that range(Ū) = range(U). Then

USt+UT = ŪSt+ŪT .

Proof. From Lemma 2.14, we have Y ∈ USt+UT if and only if Y � 0 and range(Y) ⊆
range(U). Since range(Ū) = range(U), we immediately have Y ∈ USt+UT if and
only if Y ∈ ŪSt+ŪT .

Theorem 2.17. Let F E Sn+ and X ∈ relint(F). Then

F = USt+UT ,

where U ∈ Rn×t has full column rank and satisfies range(U) = range(X).

Proof. Since {X} ⊆ F E Sn+ and {X} ∩ relint(F) 6= ∅, Proposition 2.13 implies
that face {X} = F . So, if we show that face {X} = USt+UT , we will be done.

Let Ū ∈ Rn×t having orthonormal columns and satisfying range(Ū) = range(U).
By Lemma 2.16, we have USt+UT = ŪSt+ŪT ; from Proposition 2.15, we know that
ŪSt+ŪT E Sn+. Since Ū has full column rank, X � 0, and range(Ū) = range(X),
we have by Lemma 2.14 that X ∈ ŪSt++Ū

T . Since relint(ŪSt+ŪT) = ŪSt++Ū
T , we

have {X} ∩ relint(ŪSt+ŪT) 6= ∅. Therefore, by Proposition 2.13, we have

face {X} = ŪSt+ŪT = USt+UT .

Proposition 2.15 and Theorem 2.17 together imply that the semidefinite cone is
facially exposed. Early references for this result are (Borwein and Wolkowicz, 1981c,
p. 502), (Borwein and Wolkowicz, 1981b, pp. 374–5), and Borwein and Wolkowicz
(1981a). Other sources for the above semidefinite facial results are, for example,
Ramana et al. (1997), and the earlier papers Barker (1973), and Barker and Carlson
(1975).

2.4.4 A theorem of the alternative for semidefinite opti-
mization and the minimal face

The following result is an extension of a result in Cheung et al. (2010), which itself
is specialization of the result (Borwein and Wolkowicz, 1981c, Theorem 7.1).

21

Theorem 2.18. Exactly one of the two following systems is consistent:

1. 0 6= X � 0, AX = 0, 〈C,X〉 ≤ 0;

2. A∗y ≺ C.

Furthermore, if there exists X ∈ Sn+ such that AX = 0 and 〈C,X〉 < 0, then the
system A∗y � C is also infeasible.

Proof. Suppose that there exists 0 6= X � 0 such that AX = 0 and 〈C,X〉 ≤ 0.
For the sake of contradiction, suppose that there exists y ∈ Rm such that A∗y ≺ C.
Then

0 < 〈C −A∗y,X〉
= 〈C,X〉 − 〈y,AX〉
= 〈C,X〉
≤ 0,

which is a contradiction, so @y ∈ Rm such that A∗y ≺ C.

Suppose that C −A∗y /∈ Sn++ for all y ∈ Rm. The following hyperplane separa-
tion argument was inspired by the proof in Cheung et al. (2010), but here we take
a different approach. First we observe that

C /∈ Sn++ +A∗(Rm).

Since Sn++ +A∗(Rm) is a convex cone, by weak hyperplane separation we have that
there exists X 6= 0 and β ∈ R such that

〈C,X〉 ≤ β ≤ 〈S +A∗y,X〉 , for all S ∈ Sn++, y ∈ Rm.

Taking y = 0, we see that X � 0; otherwise there exists v 6= 0 such that vTXv < 0,
giving us the contradiction

β ≤
〈
tvvT + I,X

〉
= tvTXv + 〈I,X〉 → −∞ as t→∞.

Taking S = 1
t
I and y = −tAX for t > 0, we see that AX = 0; otherwise we have

the contradiction

β ≤
〈

1

t
I +A∗(−tAX), X

〉
=

1

t
〈I,X〉 − t 〈AX,AX〉 → −∞ as t→∞.

Taking S = 1
t
I for t > 0, and y = 0, we have that 〈C,X〉 ≤ 0, since

〈C,X〉 ≤ β ≤
〈

1

t
I,X

〉
↘ 0 as t→∞.

Therefore, there exists 0 6= X � 0 such that AX = 0 and 〈C,X〉 ≤ 0.

22

Now suppose there exists an X such that X � 0, AX = 0, 〈C,X〉 < 0. For the
sake of contradiction, suppose there exists ŷ such that A∗ŷ � C; let Ŝ := C−A∗ŷ �
0. Then

0 > 〈C,X〉 =
〈
Ŝ +A∗ŷ, X

〉
=
〈
Ŝ, X

〉
≥ 0,

giving us the required contradiction.

The above Theorem of the Alternative, Theorem 2.18, now inspires us to give
the following partial description of the conjugate face of the minimal face of a
feasible set of a semidefinite optimization problem.

Proposition 2.19. Let FD := face(FD), where

FD :=
{
S ∈ Sn+ : S = C −A∗y, for some y ∈ Rm

}
.

If FD 6= ∅, then face
{
X ∈ Sn+ : AX = 0, 〈C,X〉 = 0

}
E F c

D.

Proof. Let X ∈ Sn+ such that AX = 0 and 〈C,X〉 = 0. If S = C−A∗y ∈ FD, then

〈S,X〉 = 〈C −A∗y,X〉 = 〈C,X〉 − 〈y,AX〉 = 〈C,X〉 = 0.

Therefore, 〈S,X〉 = 0, for all S ∈ FD, so X ∈ F⊥D . Since FD 6= ∅, there exists some
S̄ ∈ relint(FD). Let S̄ have compact eigenvalue decomposition S̄ = UΛUT with
U ∈ Rn×t having orthonormal columns and diagonal Λ ∈ St++. Then FD = USt+UT .
Moreover,

0 = S̄X = UΛUTX ⇒ ΛUTX = 0

⇒ UTX = 0.

This implies that X ∈ F⊥D , so X ∈ F c
D. Therefore,{

X ∈ Sn+ : AX = 0, 〈C,X〉 = 0
}
⊆ F c

D,

so we have that

face
{
X ∈ Sn+ : AX = 0, 〈C,X〉 = 0

}
E F c

D.

Since the conjugate face F c
D can be viewed as a collection of exposed faces

containing the minimal face FD, Proposition 2.19 gives us the following useful
corollary.

Corollary 2.20. Let FD := face(FD), where

FD :=
{
S ∈ Sn+ : S = C −A∗y, for some y ∈ Rm

}
.

If FD 6= ∅ and X ∈ Sn+ satisfies AX = 0 and 〈C,X〉 = 0, then

FD E Sn+ ∩ {X}
⊥ = USt+UT ,

where U ∈ Rn×t has full column rank and satisfies range(U) = null(X).

Proof. By Proposition 2.19, X ∈ F c
D. By Proposition 2.11, FD E Sn+ ∩ {X}

⊥. By

Proposition 2.15 and Lemma 2.16, Sn+ ∩ {X}
⊥ = USn−t+ UT .

23

Dual results

We now give the dual results of the above the results; the proofs proceed in an
identical manner.

Theorem 2.21. Exactly one of the two following systems is consistent:

1. 0 6= A∗y � 0, bTy ≤ 0;

2. AX = b, X � 0.

Furthermore, if there exists y ∈ Rm such that A∗y � 0 and bTy < 0, then the
system (AX = b, X � 0) is also infeasible.

Proposition 2.22. Let FP := face(FP), where

FP :=
{
X ∈ Sn+ : AX = b

}
.

If FP 6= ∅, then face
{
S ∈ Sn+ : S = A∗y, bTy = 0

}
E F c

P .

Corollary 2.23. Let FP := face(FP), where

FP :=
{
X ∈ Sn+ : AX = b

}
.

If FP 6= ∅ and S ∈ Sn+ satisfies S = A∗y for some y ∈ Rm such that bTy = 0, then

FP E Sn+ ∩ {S}
⊥ = USt+UT ,

where U ∈ Rn×t has full column rank and satisfies range(U) = null(S).

2.5 Euclidean distance matrices

A Euclidean distance matrix (EDM) is a matrix D ∈ Sn for which there exists a
set of points p1, . . . , pn ∈ Rr such that

Dij = ‖pi − pj‖2
2, for i, j = 1, . . . , n.

The smallest integer r for which this is possible is called the embedding dimension
of D, and is denoted embdim(D). Thus,

embdim(D) := min
{
r : ∃p1, . . . , pn ∈ Rr s.t. Dij = ‖pi − pj‖2

2, for all i, j
}
.

The set of Euclidean distance matrices is denoted En.

There is a natural relationship between semidefinite matrices and Euclidean
distance matrices. Let D be a Euclidean distance matrix that is realized by the
points p1, . . . , pn ∈ Rr. Let

P :=

p
T
1
...
pTn

 and Y := PP T =
(
pTi pj

)n
i,j=1

.

24

The matrix Y = PP T is known as the Gram matrix of the points p1, . . . , pn ∈ Rr.
Then

Dij = ‖pi − pj‖2
2

= pTi pi + pTj pj − 2pTi pj

= Yii + Yjj − 2Yij.

Therefore, D = K(Y), where K : Sn → Sn is the linear map1 defined as

K(Y)ij := Yii + Yjj − 2Yij, for i, j = 1, . . . , n.

Equivalently, we can define K by

K(Y) := diag(Y)eT + ediag(Y)T − 2Y, (2.5)

where e ∈ Rn is the vector of all ones. From this simple observation, we can see
that K maps the cone of semidefinite matrices, Sn+, onto En. That is, K(Sn+) = En.
In addition, since Sn+ is a convex cone, we immediately get that En is a convex cone.

2.5.1 Properties of K

We will now discuss various useful properties of the linear map K. At the end
of this section, on page 33, we provide a useful summary of the properties of K
discussed here.

The hollow matrices and the range space of K

One of the first properties one observes about a Euclidean distance matrix D is
that its diagonal must be zero. We call matrices with zero diagonal hollow. The
subspace of Sn of hollow matrices is denoted SnH . That is,

SnH := {D ∈ Sn : diag(D) = 0} .

Proposition 2.24 ((Al-Homidan and Wolkowicz, 2005, Prop. 2.2, Equation (2.8),
Item 1)). The range space of K : Sn → Sn is given by

range(K) = SnH .

Proof. Let Y ∈ Sn. Then K(Y)ii = Yii + Yii − 2Yii = 0, for all i, so K(Y) ∈ SnH .
Moreover, if D ∈ SnH and Y := −1

2
D, then K(Y) = D.

1Early appearances of this linear map are in Schoenberg (1935) and Young and Householder
(1938). However, the use of the notation K for this linear map dates back to Critchley (1988)
wherein κ was used due to the fact that the formula for K is basically the cosine law (c2 =
a2 + b2−2ab cos(γ)). Later on, in Johnson and Tarazaga (1995), K was used to denote this linear
map.

25

Translational invariance and the null space of K

The null space of K is closely related to the translational invariance of distances
between a set of points. Suppose that P ∈ Rn×r and that

P̂ = P + evT , for some v ∈ Rr;

that is, P̂ is the matrix formed by translating every row of P by the vector
v. Clearly, P and P̂ generate the same Euclidean distance matrix, so we have
K(PP T) = K(P̂ P̂ T). Note that

P̂ P̂ T = PP T + PveT + evTP + evTveT

= PP T +De(y),

where y := Pv + vT v
2
e, and De : Rn → Sn is the linear map defined as

De(y) := yeT + eyT . (2.6)

Thus, we have
0 = K(P̂ P̂ T − PP T) = K(De(y)),

so De(y) ∈ null(K). Below is the general result that fully describes the null space
of K.

Proposition 2.25 ((Al-Homidan and Wolkowicz, 2005, Prop. 2.2, Equation (2.8),
Item 2)). The null space of K is given by

null(K) = range(De).

Proof. Note that K(Y)ij = Yii + Yjj − 2Yij = 0 if and only if Yij = 1
2
(Yii + Yjj).

Therefore, K(Y) = 0 if and only if Y = yeT + eyT = De(y), where y := 1
2
diag(Y).

Rotational invariance of the Gram matrix

Suppose that P ∈ Rn×r and that

P̂ = PQ, for some Q ∈ Rr×r orthogonal;

that is, P̂ is the matrix formed by rotating/reflecting each row of P by the same
orthogonal transformation. Again, we clearly have that P and P̂ generate the same
Euclidean distance matrix, but we can say more. If Y is the Gram matrix of P and
Ŷ is the Gram matrix of P̂ , then

Ŷ = P̂ P̂ T = PQQTP T = PP T = Y.

Therefore, we have that the Gram matrix is invariant under orthogonal transfor-
mations of the points. Thus, when using a semidefinite matrix Y to represent a
Euclidean distance matrix D with D = K(Y), we must only concern ourselves with
translations of the points, since orthogonal transformations will not affect Y .

26

The adjoint of K and the centred matrices

We begin by computing the adjoint of De.

Proposition 2.26. The adjoint of De : Rn → Sn is the function D∗e : Sn → Rn

given by
D∗e(D) = 2De.

Proof. Let y ∈ Rn and D ∈ Sn. Then

〈De(y), D〉 =
〈
yeT + eyT , D

〉
=

∑
i,j

(yi + yj)Dij

= 2
∑
i

yi
∑
j

Dij

= yT (2De),

so D∗e(D) = 2De.

Using the adjoint of De, we now compute the adjoint of

K(Y) = diag(Y)eT + ediag(Y)T − 2Y = De(diag(Y))− 2Y.

Proposition 2.27. The adjoint of K : Sn → Sn is the function K∗ : Sn → Sn given
by

K∗(D) = 2 (Diag(De)−D) .

Proof. Let Y,D ∈ Sn. Then

〈K(Y), D〉 = 〈De(diag(Y))− 2Y,D〉
= 〈Y, diag∗(D∗e(D))〉 − 2 〈Y,D〉
= 〈Y,Diag(2De)− 2D〉
= 〈Y, 2 (Diag(De)−D)〉 ,

so K∗(D) = 2 (Diag(De)−D).

A matrix Y ∈ Sn is called centred if it has zero row sums. The subspace of Sn
of centred matrices is denoted SnC . That is,

SnC := {Y ∈ Sn : Y e = 0} .

Proposition 2.28 ((Al-Homidan and Wolkowicz, 2005, Prop. 2.2, Equation (2.9))).
The range space and null space of K∗ are given by

range(K∗) = range(De)⊥ = SnC and null(K∗) = SnH
⊥ = range(Diag).

27

Proof. First of all, by Proposition 2.25, we have

range(K∗) = null(K)⊥ = range(De)⊥.

Next we note that for y ∈ Rn and Y ∈ Sn, we have

〈De(y), Y 〉 = 〈y,D∗e(Y)〉 = 〈y, 2Y e〉 .

Therefore, 〈De(y), Y 〉 = 0 for all y ∈ Rn if and only if Y e = 0. By Proposition 2.24,
we have

null(K∗) = range(K)⊥ = SnH
⊥.

Clearly SnH⊥ consists of the diagonal matrices, which can be denoted as range(Diag).

Orthogonal projectors onto the hollow and centred subspaces

Proposition 2.29. The orthogonal projector onto the subspace of hollow matrices,
SnH , is the linear map offDiag : Sn → Sn defined by

offDiag(D)ij :=

{
0 if i = j

Dij if i 6= j.

In other words, offDiag(D) = D −Diag(diag(D)).

Proof. It is straightforward to check the three sufficient conditions for offDiag to
be the orthogonal projector onto SnH : offDiag2 = offDiag, offDiag∗ = offDiag, and
range(offDiag) = SnH .

Proposition 2.30. The orthogonal projector onto the subspace of hollow matrices,
SnC, is the linear map J(·)J : Sn → Sn, where

J := I − 1

n
eeT .

Proof. Since 1
n
eeT : Rn → Rn is the orthogonal projector onto the subspace span {e},

J : Rn → Rn is the orthogonal projector onto the subspace {e}⊥. Therefore, we have
that J(JY J)J = JY J and 〈JY J,X〉 = 〈Y, JXJ〉, for all X, Y ∈ Sn. Moreover,
Y ∈ SnC if and only if Y = JY J , so range(J(·)J) = SnC .

The Moore-Penrose pseudoinverse of K

Let T : Sn → Sn be defined by

T (D) := −1

2
JoffDiag(D)J, where J = I − 1

n
eeT . (2.7)

We will show that T is the Moore-Penrose pseudoinverse of K.

28

Theorem 2.31 ((Al-Homidan and Wolkowicz, 2005, Prop. 2.2, Equation (2.7))).
The linear map T : Sn → Sn defined in equation (2.7) is the Moore-Penrose pseu-
doinverse of K : Sn → Sn. That is, K† = T , so K† : Sn → Sn is given by

K†(D) = −1

2
JoffDiag(D)J, where J = I − 1

n
eeT . (2.8)

Before giving a proof of Theorem 2.31, we present two lemmas which give us
expressions for KT and T K.

Lemma 2.32. Let T : Sn → Sn be defined by equation (2.7). Then KT : Sn → Sn
is the orthogonal projector onto the hollow matrices SnH ; that is,

KT (D) = offDiag(D).

Proof. First we note that if M ∈ Sn, then

JMJ = M − 1

n

(
MeeT + eeTM + eeT

)
= M +De(y),

where y := − 1
n

(
Me+ 1

2
e
)
. Since K(De(y)) = 0, we have

K(JMJ) = K(M), for all M ∈ Sn.

Therefore,

KT (D) = −1

2
K(JoffDiag(D)J)

= −1

2
K(offDiag(D))

= offDiag(D),

since K(offDiag(D)) = −2offDiag(D).

Lemma 2.33. Let T : Sn → Sn be defined by equation (2.7). Then T K : Sn → Sn
is the orthogonal projector onto the centred matrices SnC; that is,

T K(Y) = JY J, where J = I − 1

n
eeT .

Proof. Since range(K) = SnH , we have

offDiag(K(Y)) = K(Y), for all Y ∈ Sn.

Next we note that

J [K(Y) + 2Y] J = J [De(diag(Y))] J = 0, for all Y ∈ Sn,

29

since J(·)J is the orthogonal projection onto the subspace SnC , and range(De) =
SnC⊥. Therefore,

T K(Y) = −1

2
JoffDiag(K(Y))J

= −1

2
JK(Y)J

= −1

2
(−2JY J)

= JY J.

Proof of Theorem 2.31. By Proposition 2.3, we simply must show that T satisfies
the Penrose conditions (2.1).

1. By Lemma 2.32, KT is the orthogonal projector onto the subspace SnH . Thus,
Penrose condition (2.1a) holds.

2. By Lemma 2.33, T K is the orthogonal projector onto the subspace SnC . Thus,
Penrose condition (2.1b) holds.

3. Let Y ∈ Sn. Then

KT K(Y) = K(JY J) = K(Y +De(y)) = K(Y),

where y := − 1
n

(
Y e+ 1

2
e
)
. Therefore, Penrose condition (2.1c) holds.

4. Let D ∈ Sn. Then

T KT (D) = T (offDiag(D)) = T (D),

since offDiag2 = offDiag. Therefore, Penrose condition (2.1d) holds.

Therefore, T = K†.

We now give descriptions of the four fundamental subspaces associated with K†.
Note that K†∗ : Sn → Sn is given by

K†∗(Y) = −1

2
offDiag(JY J).

Proposition 2.34. The range space and null space of the linear maps K† and K†∗
are given by

range(K†) = SnC , null(K†∗) = range(De), (2.9)

range(K†∗) = SnH , null(K†) = range(Diag). (2.10)

Proof. Result follows from Proposition 2.4, since range(K∗) = SnC , null(K∗) =
range(Diag), null(K) = range(De), and range(K) = SnH .

30

The maps K and K† as bijections

First we consider K and K† restricted to the subspaces SnC and SnH , respectively.

Proposition 2.35 ((Al-Homidan and Wolkowicz, 2005, Theorem 2.1)). The map
K : SnC → SnH is a bijection and K† : SnH → SnC is its inverse.

Proof. Result follows from Proposition 2.5 and the facts that range(K) = SnH and
range(K†) = SnC .

For the main result, we consider K and K† restricted to the convex cones Sn+∩SnC
and En, respectively.

Theorem 2.36 ((Al-Homidan and Wolkowicz, 2005, Theorem 2.3)). The map
K : Sn+ ∩ SnC → En is a bijection and K† : En → Sn+ ∩ SnC is its inverse.

Proof. As we have seen K(Sn+) = En. Therefore, if D ∈ En, there exists Y ∈ Sn+
such that K(Y) = D. Let Y = X + Z ∈ SnC ⊕ range(De) = Sn. Then applying the
orthogonal projection onto the subspace SnC , we have JY J = JXJ + JZJ = X, so
X ∈ Sn+ ∩ SnC . Now, since

D = K(Y) = K(X + Z) = K(X),

we see that K : Sn+∩SnC → En is surjective. Moreover, Proposition 2.35 implies that
K : Sn+ ∩ SnC → En is also injective, and that K† : En → Sn+ ∩ SnC is its inverse.

Embedding dimension and a theorem of Schoenberg

We now give the following well-known result for determining the embedding dimen-
sion of a Euclidean distance matrix; see Alfakih et al. (1999).

Theorem 2.37. Let D ∈ En. Then

embdim(D) = rankK†(D) ≤ n− 1.

Proof. Let r := rankK†(D). Since D ∈ En, by Theorem 2.36, we have K†(D) ∈
Sn+ ∩ SnC . Let K†(D) = UΛUT be the compact eigenvalue decomposition of K†(D)
with U ∈ Rn×r having orthonormal columns and diagonal Λ ∈ Sr++. Let

P := UΛ1/2.

Then K†(D) = PP T , and D = K(PP T). Therefore, embdim(D) ≤ r. Now
suppose, for the sake of contradiction, that r̄ := embdim(D) < r. Then there
exists P̄ ∈ Rn×r̄ such that K(P̄ P̄ T) = D. Applying K† to both sides gives us
K†K(P̄ P̄ T) = K†(D). Since K†K is the orthogonal projection onto the subspace

31

SnC , we have JP̄ P̄ TJ = K†(D). But JP̄ ∈ Rn×r̄ implies that rankK†(D) ≤ r̄, giving
us the contradiction

r = rankK†(D) ≤ r̄ = embdim(D) < r.

Therefore, embdim(D) = rankK†(D). Furthermore, since range(K†) = SnC , we have
K†(D)e = 0, implying that rankK†(D) ≤ n− 1.

Finally we give the following much celebrated theorem of Schoenberg.

Theorem 2.38 (Schoenberg (1935)). A matrix D ∈ SnH is a Euclidean distance
matrix if and only if K†(D) is positive semidefinite.

Proof. If D ∈ En, then Theorem 2.36 implies that K†(D) ∈ Sn+ ∩ SnC . On the other
hand, suppose D ∈ SnH and Y := K†(D) ∈ Sn+. Then D = KK†(D), since KK† is
the orthogonal projection onto the subspace SnH . Therefore, D = K(Y) ∈ En, since
K(Sn+) = En.

Norm of K

We now provide a proof that the operator norm of K is 2
√
n.

Lemma 2.39 (e.g., (Critchley, 1988, Cor. 2.10)).

‖K‖F := max
06=S∈Sn

‖K(S)‖F
‖S‖F

= 2
√
n.

Proof. First we note that ‖K‖F =
√
ρ(K∗K), where ρ(K∗K) is the spectral radius

of K∗K, which is defined as

ρ(K∗K) := max {|λ| : λ is an eigenvalue of K∗K} .

Since K∗K keeps the cone Sn+∩SC invariant, (that is, K∗K(Sn+∩SC) = Sn+∩SC), we
have by Perron-Frobenius theory (see, for example, the classic book Berman and
Plemmons (1979)), that ρ(K∗K) is an eigenvalue, called the Perron root, and its
eigenvector, called the Perron vector, is the only eigenvector in the relative interior
of the cone kept invariant, Sn+ ∩ SC .

This implies that we need only to show that there is an eigenvector Y of K∗K in
relint(Sn+ ∩ SC), and it satisfies K∗K(Y) = 4nY . To that end, we let Y be defined
by

Yij :=

{
n− 1 if i = j

−1 if i 6= j.

Then,

K(Y)ij = Yii + Yjj − 2Yij

=

{
0 if i = j

2n if i 6= j,

32

which implies that

K∗(K(Y))ij =

{
2(
∑n

k=1K(Y)ik −K(Y)ii) if i = j

−2K(Y)ij if i 6= j

=

{
4n(n− 1) if i = j

−4n if i 6= j

= 4nYij.

Therefore, K∗K(Y) = 4nY . To see that Y ∈ relint(Sn+ ∩ SnC), we note that Y e = 0
and the eigenvalues of Y are 0 and n − 1, with multiplicities of 1 and n − 1,
respectively.

Summary of properties of K

Here we provide a useful summary of the properties discussed above.

De(y) := yeT + eyT D∗e(D) = 2De

K(Y) := De(diag(Y))− 2Y K∗(D) = 2(Diag(De)−D)

K†(D) = −1

2
JoffDiag(D)J , where J := I − 1

n
eeT

SnH := {D ∈ Sn : diag(D) = 0} KK†(D) = offDiag(D)

SnC := {Y ∈ Sn : Y e = 0} K†K(Y) = JY J

range(K) = SnH null(K†) = range(Diag)

range(K†) = SnC null(K) = range(De)

K(SnC) = SnH K†(SnH) = SnC
K(Sn+ ∩ SnC) = En K†(En) = Sn+ ∩ SnC

embdim(D) = rankK†(D), for D ∈ En

‖K‖F = 2
√
n

2.5.2 The cone of Euclidean distance matrices is closed

It is well-known that En is closed; see, for example, (Critchley, 1988, p. 103),
(Hayden et al., 1991, p. 155-6), and (Dattorro, 2008, p. 477). However, we now
present our own proof of this result that is based on the linear map K and its null
space. Recall that the cone of Euclidean distance matrices satisfies En = K(Sn+).
To show that En is closed, we begin with a well-known result due to R. A. Abrams.

33

Theorem 2.40 (R. A. Abrams (Berman, 1973, Lemma 3.1)). Let S ⊆ E be an
arbitrary set, and A : E→ Y be a linear map. Then

A(S) is closed ⇔ S + null(A) is closed.

Proof. (Berman, 1973, Lemma 3.1) First, we assume that A(S) is closed. Let
zk ∈ S + null(A) such that zk → z, where we aim to show that z ∈ S + null(A).
Since there exists xk ∈ S and yk ∈ null(A) such that zk = xk + yk, we have that

Azk = Axk + Ayk = Axk ∈ A(S), for all k.

Since A is a continuous map, Azk → Az, and since A(S) is closed, we have that
Az ∈ A(S). Therefore, there exists x ∈ S such that Az = Ax, which implies that
z = x+ y, for some y ∈ null(A). Thus, z ∈ S + null(A), so S + null(A) is closed.

Now, we assume that S + null(A) is closed. Let zk ∈ A(S) such that zk → z;
we aim to show that z ∈ A(S). Note that there exists xk ∈ S such that zk = Axk,
implying that xk = A†zk + yk, for some yk ∈ null(A). Therefore,

A†zk = xk − yk ∈ S + null(A), for all k.

Since A† is a continuous map, A†zk → A†z, and since S+null(A) is closed, we have
that A†z ∈ S + null(A). Therefore, A†z = x− y, for some x ∈ S and y ∈ null(A).
Thus, Ax = AA†z, and since zk ∈ range(A), we have AA†zk = zk, implying that
AA†z = z. Therefore, Ax = z, so z ∈ A(S), as required.

Recall that null(K) = range(De). By Theorem 2.40,

En = K(Sn+) is closed ⇔ Sn+ + range(De) is closed.

Therefore, to show that En is closed, we only need to show that Sn+ + range(De) is
closed. We begin with the following lemma.

Lemma 2.41. Let Q :=
[
V 1√

n
e
]
∈ Rn×n be orthogonal. Let

Σ :=

{
Y ∈ Sn : Y =

[
0 v
vT t

]
, v ∈ Rn−1, t ∈ R

}
.

Then
QT range(De)Q = Σ.

Proof. Let Y ∈ range(De). Then Y = veT + evT , so

QTY Q = QT evTQ+QTveTQ

=

[
0√
n

]
vTQ+QTv

[
0√
n

]T
=

[
0√
nvTQ

]
+
[
0
√
nQTv

]
∈ Σ.

34

Conversely, let Y ∈ Σ. Then Y =

[
0 v
vT t

]
, so

QY QT =
[
V 1√

n
e
] [0 v
vT t

] [
V T

1√
n
eT

]
=

1√
n
V veT +

1√
n
evTV T +

1

n
teeT

= yeT + eyT ,

where y := 1√
n
V v + 1

2n
te. Therefore, Y = QTDe(y)Q.

We are now in a position to prove the main result of this section.

Proposition 2.42 (Critchley (1988)). The cone of Euclidean distance matrices En
is closed.

Proof. We now present our own proof of this well-known result. We show that
Sn+ + range(De) is closed; this argument is inspired by the proof of Lemma 2.2 in
Ramana et al. (1997). Let Zk ∈ Sn+ + range(De) such that Zk → Z. Then there
exists Xk ∈ Sn+ and Yk ∈ range(De) such that Zk = Xk + Yk. By Lemma 2.41,
QTYkQ ∈ Σ. Thus, letting[

Hk uk
uTk tk

]
:= QTZkQ = QTXkQ+QTYkQ,

we have Hk � 0, for all k. Thus

QTZkQ→ QTZQ =:

[
H u
uT t

]

satisfies H � 0. Therefore, Z = Q

[
H 0
0 0

]
QT + Q

[
0 u
uT t

]
QT ∈ Sn+ + QΣQT =

Sn+ + range(De), with the last equality following from Lemma 2.41. Therefore,
Sn+ +range(De) is closed, implying by Theorem 2.40 that En = K(Sn+) is closed.

We can also use the fact that Sn+ is a nice cone to obtain an alternate proof of
Proposition 2.42. A cone K ⊆ E is called nice if K∗ + F⊥ is closed, for all F E K.

Lemma 2.43 ((Tunçel and Wolkowicz, 2008, Lemma 2.25)). Let {0} 6= F E Sn+.
Then F ∗ = Sn+ + F⊥ = cl(Sn+ + spanF c) and Sn+ + spanF c is not closed.

Alternate proof of Proposition 2.42. Let F := Sn+ ∩ SnC . Then {0} 6= F E Sn+. By
Lemma 2.43, we have that Sn+ + F⊥ is closed. Moreover,

F⊥ =
(
Sn+ ∩ SnC

)⊥
= span(Sn+ ∩ SnC)⊥ = (SnC)⊥ = range(De).

Therefore, Sn+ + range(De) is closed, implying by Theorem 2.40 that En = K(Sn+)
is closed.

35

2.5.3 The dual cone of the Euclidean distance matrix cone

Since En = K(Sn+), the dual cone of the Euclidean distance matrix cone En is given
by

(En)∗ = {Λ ∈ Sn : 〈Λ, D〉 ≥ 0, for all D ∈ En}
=
{

Λ ∈ Sn : 〈Λ, D〉 ≥ 0, for all D ∈ K(Sn+)
}

=
{

Λ ∈ Sn : 〈Λ,K(Y)〉 ≥ 0, for all Y ∈ Sn+
}

=
{

Λ ∈ Sn : 〈K∗(Λ), Y 〉 ≥ 0, for all Y ∈ Sn+
}

= {Λ ∈ Sn : K∗(Λ) � 0} .
It is shown that in Dattorro (2008) that

(En)∗ = range(Diag)− Sn+ ∩ SnC .
We now give a proof of this result using the linear maps K∗ and K†∗. Recall that

K∗(D) = 2(Diag(De)−D) and K†∗(Y) = −1

2
offDiag(JY J).

Proposition 2.44. The map K∗ : SnH → SnC is a bijection and K†∗ : SnC → SnH is its
inverse. That is,

K∗(SnH) = SnC , SnH = K†∗(SnC).

Proof. Result follows from Proposition 2.5 and the facts that range(K∗) = SnC and
range(K†∗) = SnH .

Proposition 2.45. The map K∗ : (En)∗∩SnH → Sn+∩SnC is a bijection and K†∗ : Sn+∩
SnC → (En)∗ ∩ SnH is its inverse. That is,

K∗((En)∗ ∩ SnH) = Sn+ ∩ SnC , (En)∗ ∩ SnH = K†∗(Sn+ ∩ SnC).

Proof. Since range(K∗) = SnC , we clearly have K∗((En)∗) ⊆ Sn+ ∩ SnC . Hence,
K∗((En)∗ ∩SnH) ⊆ Sn+ ∩SnC . Now suppose Y ∈ Sn+ ∩SnC , and let Λ := K†∗(Y) ∈ SnH .
Then

K∗(Λ) = K∗K†∗(Y) = JY J = Y,

since K∗K†∗ is the orthogonal projector onto range(K∗) = SnC . Thus, K∗(Λ) � 0,
so Λ ∈ (En)∗, implying that Y ∈ K∗((En)∗ ∩ SnH). Therefore, K∗ : (En)∗ ∩ SnH →
Sn+∩SnC is surjective. The fact that K∗ : (En)∗∩SnH → Sn+∩SnC is injective and that
K†∗ : Sn+ ∩ SnC → (En)∗ ∩ SnH is its inverse follows from Proposition 2.44.

However, (En)∗∩SnH 6= (En)∗, since null(K∗) = range(Diag) implies that Diag(λ)+
Λ ∈ (En)∗, for all λ ∈ Rn and Λ ∈ (En)∗. Therefore, we have the following result,
which is clearly equivalent to the result from Dattorro (2008).

Corollary 2.46. The dual cone of the Euclidean distance matrix cone En satisfies

(En)∗ = range(Diag)⊕K†∗(Sn+) = range(Diag)	 offDiag(Sn+ ∩ SnC).

Proof. Follows from (En)∗ = range(Diag)⊕ [(En)∗ ∩ SnH] and

(En)∗ ∩ SnH = K†∗(Sn+ ∩ SnC) = K†∗(Sn+) = −offDiag(Sn+ ∩ SnC).

36

2.6 The Euclidean distance matrix completion prob-

lem

Following Bakonyi and Johnson (1995), we say that an n-by-n matrix D is a partial
Euclidean distance matrix if every entry of D is either “specified” or “unspecified”,
diag(D) = 0, and every fully specified principal submatrix of D is a Euclidean
distance matrix. Note that this definition implies that every specified entry of
D is nonnegative. In addition, if every fully specified principal submatrix of D
has embedding dimension less than or equal to r, then we say that D is a partial
Euclidean distance matrix in Rr.

Associated with an n-by-n partial Euclidean distance matrix D is a weighted
undirected graph G = (N,E, ω) with node set N := {1, . . . , n}, edge set

E := {ij : i 6= j, and Dij is specified},

and edge weights ω ∈ RE
+ with ωij =

√
Dij for all ij ∈ E. We say that H is the

0–1 adjacency matrix of G if H ∈ Sn with

Hij =

{
1, ij ∈ E
0, ij /∈ E.

The Euclidean distance matrix completion (EDMC) problem asks to find a com-
pletion of a partial Euclidean distance matrix D; that is, if G = (N,E, ω) is the
weighted graph associated with D, the Euclidean distance matrix completion prob-
lem can be posed as

find D̂ ∈ En
s.t. D̂ij = Dij, ∀ij ∈ E.

(2.11)

Letting H ∈ Sn be the 0–1 adjacency matrix of G, the Euclidean distance matrix
completion problem can be stated as

find D̂ ∈ En
s.t. H ◦ D̂ = H ◦D,

(2.12)

where “◦” represents the component-wise (or Hadamard) matrix product.

Using the linear map K, we can substitute D̂ = K(Y), where Y ∈ Sn+ ∩ SnC , in
the EDM completion problem (2.12) to obtain the equivalent problem

find Y ∈ Sn+ ∩ SnC
such that H ◦ K(Y) = H ◦D. (2.13)

2.6.1 The low-dimensional EDM completion problem

If D is a partial Euclidean distance matrix in Rr, one is often interested in finding a
Euclidean distance matrix completion of D that has embedding dimension r. The

37

low-dimensional Euclidean distance matrix completion problem is

find D̂ ∈ En
such that H ◦ D̂ = H ◦D

embdim(D̂) = r,

(2.14)

where H is the 0–1 adjacency matrix of the graph G associated with D.

Using the linear map K, we can state the low-dimensional EDM completion
problem (2.14) as the following rank constrained semidefinite optimization problem:

find Y ∈ Sn+
such that H ◦ K(Y) = H ◦D

Y e = 0
rank(Y) = r.

(2.15)

2.6.2 Chordal EDM completions

Let G be a graph and C be a cycle in the graph. We say that C has a chord if there
are two vertices on C that are connected by an edge which is not contained in C.
Note that it is necessary that a cycle with a chord have length more than three. The
graph G is called chordal if every cycle of the graph with length three or more has a
chord. In the landmark paper Grone et al. (1984), they show the strong result that
any partial semidefinite matrix with a chordal graph has a semidefinite completion;
moreover, if a graph is not chordal, then there exists a partial semidefinite matrix
with that graph, but having no semidefinite completion.

Due to the strong connection between Euclidean distance matrices and semidefi-
nite matrices, it is not surprising that the result of chordal semidefinite completions
of Grone et al. (1984) extends to the case of chordal Euclidean distance matrix com-
pletion. Indeed, Bakonyi and Johnson (1995) show the following:

1. any partial Euclidean distance matrix in Rr with a chordal graph can be
completed to a distance matrix in Rr;

2. every nonchordal graph has a partial Euclidean distance matrix that does not
admit any distance matrix completions;

3. if the graph G of a partial Euclidean distance matrix D in Rr is chordal, then
the completion of D is unique if and only if

rank

([
0 eT

e D[S]

])
= r + 2, for all minimal vertex seperators S of G.

A set of vertices S in a graph G is a minimal vertex seperator if removing the
vertices S from G separates some vertices u and v in G, and no proper subset of
S separates u and v. It is discussed in, for example, Kumar and Madhavan (1998)

38

how the maximum cardinality search (MCS) can be used to test in linear time if
a graph G is chordal; moreover, Kumar and Madhavan (1998) show that MCS
can also be used to compute all minimal vertex separators of a chordal graph in
linear time. See also Alfakih (2003, 2005), for example, for more on the topic of
uniqueness of Euclidean distance matrix completions.

2.6.3 Graph realization and graph rigidity

We note here the deep connection between the Euclidean distance matrix comple-
tion problem and the problem of graph realization. Let N := {1, . . . , n}. Given a
graph G = (N,E, ω) with edge weights ω ∈ RE

+, the graph realization problem asks
to find a mapping p : N → Rr such that

‖pi − pj‖ = ωij, for all ij ∈ E;

in this case, we say that G has an r-realization, p. Clearly the graph realization
problem is equivalent to the problem of Euclidean distance matrix completion, and
the problem of the r-realizability of a weighted graph is equivalent to the low-
dimensional Euclidean distance matrix completion problem.

A related problem is that of graph rigidity. Again, let N := {1, . . . , n}. An
unweighted graph G = (N,E) together a mapping p : N → Rr is called a framework
(also bar framework) in Rr, and is denoted by (G, p). Frameworks (G, p) in Rr and
(G, q) in Rs are called equivalent if

‖pi − pj‖ = ‖qi − qj‖ , for all ij ∈ E.

Furthermore, p and q are called congruent if

‖pi − pj‖ = ‖qi − qj‖ , for all i, j = 1, . . . , n. (2.16)

Note that condition (2.16) can be stated as

K(PP T) = K(QQT),

where P ∈ Rn×r and Q ∈ Rn×s are defined as

P :=

p
T
1
...
pTn

 and Q :=

q
T
1
...
qTn

 .
Thus, if P T e = QT e = 0, then we have PP T = QQT . By Proposition 3.2 (presented
in the next chapter), PP T = QQT implies that:

• PQ̄ =
[
Q 0

]
, for some orthogonal Q̄ ∈ Rr, if r ≥ s;

•
[
P 0

]
Q̄ = Q, for some orthogonal Q̄ ∈ Rs, if s ≥ r.

39

A framework (G, p) in Rr is called globally rigid in Rr if all equivalent frameworks
(G, q) in Rr satisfy condition (2.16). Similarly, a framework (G, p) in Rr is called
universally rigid in Rr if, for all s = 1, . . . , n − 1, all equivalent frameworks (G, q)
in Rs satisfy condition (2.16). Note that a framework (G, p) in Rr corresponds to
the pair (H,D), where H is the 0–1 adjacency matrix of G, and D is a Euclidean
distance matrix embdim(D) ≤ r. Therefore, the framework (G, p) given by (H,D)
is globally rigid if

H ◦ D̂ = H ◦D ⇒ D̂ = D,

for all D̂ ∈ En with embdim(D̂) ≤ r; equivalently, (G, p) is globally rigid if

H ◦ K(Y) = H ◦D ⇒ K(Y) = D,

for all Y ∈ Sn+ ∩ SnC with rank(Y) ≤ r. Moreover, the framework (G, p) given by
(H,D) is universally rigid if

H ◦ D̂ = H ◦D ⇒ D̂ = D,

for all D̂ ∈ En; equivalently, (G, p) is universally rigid if

H ◦ K(Y) = H ◦D ⇒ K(Y) = D,

for all Y ∈ Sn+ ∩ SnC .

Graph realization and graph rigidity is a vast area of research, so we keep
our discussion brief. More information can be found in, for example, Hendrickson
(1992), Connelly (2005), So (2007), the recent survey Alfakih et al. (2009), and the
references therein.

2.6.4 Low-dimensional EDM completion is NP-hard

We will now discuss the complexity of the low-dimensional Euclidean distance ma-
trix completion decision problem (2.14) (equivalently, problem (2.15)). It was in-
dependently discovered by Saxe (1979) and Yemini (1979) that the problem of
graph embeddability with integer edge weights, in r = 1 or r = 2 dimensions, is
NP-complete by reduction from the NP-complete problem Partition. The Parti-
tion problem is defined as follows: Given a set of S of n integers, determine if there
is a partition of S into two sets S1, S2 ⊆ S such that the sum of the integers in S1

equals the sum of the integers in S2. Partition is one of Karp’s 21 NP-complete
problems in his landmark paper Karp (1972).

Theorem 2.47 ((Saxe, 1979, Theorem 3.2)). The problem of 1-embeddability of
graphs with integer weights is NP-complete.

Proof. We follow the proof given in Saxe (1979). Let an instance of Partition
be given by a subset of integers S = {s1, . . . , sn}; we may assume, without loss of
generality, that these integers are nonnegative by shifting them if necessary. Let

40

G be the cycle on n vertices with the n edge weights given by s1, . . . , sn. A 1-
embedding of G corresponds to folding this cycle flat onto the real number line.
Walking along such a folded cycle, the edges partition into edges traversed from
left-to-right, and edges traversed from right-to-left. We would then let S1 be the
edges traversed from left-to-right, and let S2 be the edges traversed from right-
to-left. Then the {S1, S2} would form a partition of S, and since G is a cycle,
the sum of the integers in S1 would equal the sum of the integers in S2, solving
this instance of the Partition problem. Moreover, if no such 1-embedding of G
is possible, then S cannot be partitioned into equal summing subsets (otherwise
such a partition would give us a 1-embedding of G). Therefore, the NP-complete
Partition problem reduces to the problem of 1-embeddability of graphs with
integer weights, so we have shown the 1-embeddability with integer weights is NP-
hard. Now, since checking a candidate solution for 1-embeddability with integer
weights can be done in polynomial time, 1-embeddability with integer weights is in
NP, and hence is NP-complete.

Furthermore, by showing that for any r, r-embeddability of {1, 2}-weighted
graphs is NP-hard, Saxe (1979) proves that the problem of r-embeddability of
integer weighted graphs is strongly NP-hard.

In our tests, we work with so-called unit disk graphs which have realization in
some Euclidean space satisfying their edge-weights such that the distance between
vertices that are not connected is greater than some radio range R, and R is greater
than all the edge weights. Thus, vertices are connected if and only if they are within
radio range. However, Bădoiu et al. (2006) have shown that realizability of unit disk
graphs is, in fact, NP-hard (again, by reduction from Partition). In the Bădoiu
et al. (2006) proof, they again work with cycles, which are typically not uniquely
realizable. In the applications we consider, we are most interested in unit disk
graphs that have a unique realization. However, it is shown in Aspnes et al. (2004)
and Aspnes et al. (2006) that there is no efficient algorithm for solving the unit
disk graph localization problem, even if that graph has a unique realization, unless
RP = NP (RP is the class of randomized polynomial time solvable problems).
Problems in RP can be solved in polynomial time with high probability using a
randomized algorithm. See also Laurent (2001), for example, for more on the topic
of the complexity of Euclidean distance matrix completion and related problems.

Due to these hardness results for the low-dimensional Euclidean distance matrix
problem, we turn to convex relaxations which can be solved efficiently, but may not
solve our original problem.

2.6.5 Semidefinite relaxation of the low-dimensional EDM
completion problem

The semidefinite relaxation of the low-dimensional EDM completion problem (2.15)
is given by relaxing the hard rank(Y) = r constraint. Thus, we have the following

41

tractable convex relaxation

find Y ∈ Sn+
such that H ◦ K(Y) = H ◦D

Y e = 0.
(2.17)

This semidefinite relaxation essentially allows the points to move into Rk, where
k > r. That is, if a solution Y of problem 2.17 has rank(Y) = k > r, then we have
found a Euclidean distance matrix completion of D with embedding dimension k;
this is even possible if D has a completion with embedding dimension r, or even if
D has a unique completion with embedding dimension r.

We can view this relaxation as a Lagrangian relaxation of the low-dimensional
EDM completion problem.

Proposition 2.48. Relaxation (2.17) is the Lagrangian relaxation of Problem (2.15).

Proof. Problem (2.15) is equivalent to

minimize 0
subject to H ◦ K

(
PP T

)
= H ◦D

P T e = 0
P ∈ Rn×r.

Following the recipe in Poljak et al. (1995), we square the linear constraints to
obtain the equivalent problem

minimize 0
subject to H ◦ K

(
PP T

)
= H ◦D

‖P T e‖2
2 = 0

P ∈ Rn×r.

The Lagrangian of this problem is

L(P,Λ, t) =
〈
Λ, H ◦

(
K
(
PP T

)
−D

)〉
+ t‖P T e‖2

2

=
〈
K∗(H ◦ Λ), PP T

〉
− 〈H ◦ Λ, D〉+ teTPP T e

=
〈
K∗(H ◦ Λ) + teeT , PP T

〉
− 〈H ◦ Λ, D〉

= trace
[
P T
(
K∗(H ◦ Λ) + teeT

)
P
]
− 〈H ◦ Λ, D〉 .

Therefore, the Lagrangian dual

sup
Λ,t

inf
P
L(P,Λ, t)

is given by
maximize −〈H ◦ Λ, D〉
subject to K∗(H ◦ Λ) + teeT � 0.

42

This is a semidefinite optimization problem with dual

minimize 0
subject to H ◦ K (Y) = H ◦D〈

Y, eeT
〉

= 0
Y ∈ Sn+.

This last problem is equivalent to problem (2.17).

2.6.6 Duality of the semidefinite relaxation

Problem (2.17) is equivalent to

minimize 0
subject to H ◦ K(Y) = H ◦D

Y e = 0
Y ∈ Sn+

The Lagrangian of this problem is given by

L(Y,Λ, v) = 〈Λ, H ◦ K(Y)−H ◦D〉+ 〈v, Y e〉
= 〈K∗(H ◦ Λ), Y 〉 − 〈H ◦ Λ, D〉+

〈
evT , Y

〉
=

〈
K∗(H ◦ Λ) +

1

2

(
evT + veT

)
, Y

〉
− 〈H ◦ Λ, D〉

=

〈
K∗(H ◦ Λ) +

1

2
De(v), Y

〉
− 〈H ◦ Λ, D〉 .

Therefore, the Lagrangian dual problem is

sup
Λ,v

inf
Y ∈Sn

+

L(Y,Λ, v),

which is equivalent to

sup

{
−〈H ◦ Λ, D〉 : K∗(H ◦ Λ) +

1

2
De(v) � 0

}
.

From this dual problem, we obtain the following partial description of the con-
jugate face of the minimal face of the EDM completion problem (2.17).

Proposition 2.49. Let F := face(F), where

F :=
{
Y ∈ Sn+ : H ◦ K(Y) = H ◦D, Y e = 0

}
.

If F 6= ∅, then

face

{
S ∈ Sn+ : S = K∗(H ◦ Λ) +

1

2
De(v), 〈H ◦ Λ, D〉 = 0

}
E F c.

43

Proof. Proof follows as in the proof of Proposition 2.19.

Using Proposition 2.49, we obtain the following partial description of the mini-
mal face of the EDM completion problem (2.17).

Corollary 2.50. If F :=
{
Y ∈ Sn+ : H ◦ K(Y) = H ◦D, Y e = 0

}
6= ∅ and there

exists S � 0 such that

S = K∗(H ◦ Λ) +
1

2
De(v) and 〈H ◦ Λ, D〉 = 0,

for some Λ ∈ Sn and v ∈ Rn, then

face(F) E Sn+ ∩ {S}
⊥ .

Proof. By Proposition 2.49, we have that S ∈ face(F)c. By Proposition 2.11, we
have that face(F) E Sn+ ∩ {S}

⊥.

For example, we can apply Corollary 2.50 as follows. Let Λ := 0 and v := e.
Then,

K∗(H ◦ Λ) +
1

2
De(v) = eeT � 0, and 〈H ◦ Λ, D〉 = 0.

Thus,

face
{
Y ∈ Sn+ : H ◦ K(Y) = H ◦D, Y e = 0

}
E Sn+ ∩

{
eeT
}⊥

= V Sn−1
+ V T ,

where
[
V 1√

n
e
]
∈ Rn×n is orthogonal. Note that we have V TV = I and V V T =

J , where J is the orthogonal projector onto {e}⊥. Therefore, Problem (2.17) is
equivalent to the reduced problem

find Z ∈ Sn−1
+

such that H ◦ KV (Z) = H ◦D,

where KV : Sn−1 → Sn is defined by

KV (Z) := K(V ZV T).

We will return to this topic of facial reduction again in Chapter 4.

2.6.7 Rank minimization heuristics for the EDM comple-
tion problem

In order to encourage having a solution of the semidefinite relaxation with low
rank, the following heuristic has been suggested by Weinberger et al. (2004) and
used with great success by Biswas et al. (2006) on the sensor network localization
problem. The idea is that we can try to “flatten” the graph associated with a

44

partial Euclidean distance matrix by pushing the nodes of the graph away from
each other as much as possible. This flattening of the graph then corresponds to
reducing the rank of the semidefinite solution of the relaxation. Geometrically, this
makes a lot of sense, and Weinberger et al. (2004) gives this nice analogy: a loose
string on the table can occupy two dimensions, but the same string pulled taut
occupies just one dimension.

Therefore, we would like to maximize the objective function

n∑
i,j=1

‖pi − pj‖2 = eTK(PP T)e,

where

P :=

p
T
1
...
pTn

 ,
subject to the distance constraints holding. Moreover, if we include the constraint
that P T e = 0, then

eTK(PP T)e =
〈
eeT ,K(PP T)

〉
=
〈
K∗(eeT), PP T

〉
=
〈
2(Diag(eeT e)− eeT), PP T

〉
=
〈
2(nI − eeT), PP T

〉
=
〈
2nI, PP T

〉
−
〈
eeT , PP T

〉
= 2n · trace(PP T).

Note that

trace(PP T) =
n∑
i=1

‖pi‖2 ,

so pushing the nodes away from each other is equivalent to pushing the nodes away
from the origin, under the assumption that the points are centred at the origin.
Normalizing this objective function by dividing by the constant 2n, substituting
Y = PP T , and relaxing the rank constraint on Y , we obtain the following reg-
ularized semidefinite relaxation of the low-dimensional Euclidean distance matrix
completion problem:

maximize trace(Y)
subject to H ◦ K(Y) = H ◦D

Y ∈ Sn+ ∩ SnC .
(2.18)

It is very interesting to compare this heuristic with the nuclear norm rank
minimization heuristic that has received much attention lately; see, for example,
Fazel (2002), Recht et al. (2008a), Recht et al. (2008b), Candès and Recht (2008),

45

Candès and Plan (2009), and Ames and Vavasis (2009). The nuclear norm of a
matrix X ∈ Rm×n is given by

‖X‖∗ :=
k∑
i=1

σi(X),

where σi(X) is the ith largest singular value of X, and rank(X) = k. The nuclear
norm of a symmetric matrix Y ∈ Sn is then given by

‖Y ‖∗ =
n∑
i=1

|λi(Y)|.

Furthermore, for Y ∈ Sn+, we have ‖Y ‖∗ = trace(Y).

Since we are interested in solving the rank minimization problem,

minimize rank(Y)
subject to H ◦ K(Y) = H ◦D

Y ∈ Sn+ ∩ SnC ,
(2.19)

the nuclear norm heuristic gives us the problem

minimize trace(Y)
subject to H ◦ K(Y) = H ◦D

Y ∈ Sn+ ∩ SnC .
(2.20)

However, this is geometrically interpreted as trying to bring all the nodes of the
graph as close to the origin as possible. Intuition tells us that this approach would
produce a solution with a high embedding dimension.

A comparison between these two approaches of trace minimization and trace
maximization appears in the two related papers Göring et al. (2008) and Göring
et al. (2009) on graph realization. In a recent talk by Helmberg, it is observed in
numerical tests that trace minimization produces graph realizations in high dimen-
sions, while the graph realizations obtained from trace maximization tend to be in
a much lower dimensional space.

Another rank minimization heuristic that has been considered recently in Fazel
et al. (2003) is the log-det maximization heuristic. There they successfully com-
puted solutions to Euclidean distance matrix problems with very low embedding
dimension via this heuristic.

46

Chapter 3

Applications of Euclidean
Distance Matrices

There are many applications of Euclidean distance matrices, including wireless sen-
sor network localization, molecular conformation in chemistry and bioinformatics,
and multidimensional scaling in statistics and machine learning. Here we will focus
on the first two applications.

3.1 Sensor network localization

The sensor network localization (SNL) problem is a low-dimensional Euclidean
distance matrix completion problem in which the position of a subset of the nodes
is specified. In the sensor network localization problem, we have n −m unknown
points

x1, . . . , xn−m ∈ Rr,

called sensors, and m known points

a1, . . . , am ∈ Rr,

called anchors. We let

X :=

 xT1
...

xTn−m

 ∈ R(n−m)×r, A :=

a
T
1
...
aTm

 ∈ Rm×r, and P :=

[
X
A

]
∈ Rn×r.

We will partition the n-by-n partial Euclidean distance matrix as

D =:

[n−m m

n−m D11 D12

m DT
12 D22

]
.

47

The sensor network localization problem can then be stated as follows: Given A ∈
Rm×r and an n-by-n partial Euclidean distance matrix D satisfying D22 = K(AAT),
with corresponding 0–1 adjacency matrix H,

find X ∈ R(n−m)×r

such that H ◦ K
(
PP T

)
= H ◦D

P =

[
X
A

]
∈ Rn×r.

(3.1)

Before discussing the semidefinite relaxation of the sensor network localization
problem, we first discuss the important assumption having anchors whose affine
hull has full dimension, and how we may, in fact, remove the constraint on P that
its bottom block must equal the anchor positions A.

3.1.1 Anchors and the Procrustes problem

A key assumption that we need to make is that the affine hull of the anchors
A ∈ Rm×r is full-dimensional. That is, we need

aff {a1, . . . , am} = Rr.

This holds if, for all x ∈ Rr, there exists λ1, . . . , λm ∈ R such that
∑m

i=1 λi = 1 and

x = λ1a1 + · · ·+ λmam.

Another way to say this is that

Rr × {1} ⊆ range

([
AT

eT

])
,

implying that

Rr+1 = span(Rr × {1}) ⊆ range

([
AT

eT

])
⊆ Rr+1,

which further implies that null
([
A e

])
= {0}. Thus, we have that the affine hull of

the anchors is full-dimensional if and only if
[
A e

]
∈ Rm×(r+1) has full column rank.

We immediately see that this assumption implies that we must have m ≥ r + 1,
and we also must have that A itself has full column rank. The reason we make
this assumption is due to the fact that when the affine hull of the anchors is not
full dimensional, we may reflect the position of the anchors across any hyperplane
containing the affine hull of the anchors, giving us another distinct solution of the
sensor network localization problem (3.1).

On the other hand, from the following observation, we can discard the constraint
P2 = A in problem (3.1), where P ∈ Rn×r is partitioned as

P =:

[r

n−m P1

m P2

]
. (3.2)

48

Suppose that P satisfies H ◦ K
(
PP T

)
= H ◦D in problem (3.1). Then

K(P2P
T
2) = K(AAT).

Assuming, without loss of generality, that P T
2 e = 0 and AT e = 0, we have that

P2P
T
2 = AAT . As we will see, this implies that there exists an orthogonal Q ∈ Rr

such that P2Q = A. Since such an orthogonal transformation does not change
the distances between points, we have that PQ is a feasible solution of the sensor
network localization problem (3.1), with sensor positions X := P1Q.

To show the existence of such an orthogonal transformation, we will now discuss
the following classical problem. Given A,B ∈ Rm×n, the Procrustes problem asks
to find an orthogonal Q ∈ Rr that minimizes ‖BQ− A‖F ; that is

minimize ‖BQ− A‖F
subject to QTQ = I.

(3.3)

The general solution to this problem was first given in Schönemann (1966) (see also
Green (1952), Higham (1986), and Golub and Van Loan (1996)).

Theorem 3.1 (Schönemann (1966)). Let A,B ∈ Rm×n. Then Q := UV T is an op-
timal solution of the Procrustes problem (3.3), where BTA = UΣV T is the singular
value decomposition of BTA.

Proof. Here we follow the proof given in (Golub and Van Loan, 1996, Section 12.4.1).
We first observe that if Q ∈ Rr is orthogonal, then

‖BQ− A‖2
F = 〈BQ− A,BQ− A〉 = ‖B‖2

F − 2
〈
Q,BTA

〉
+ ‖A‖2

F .

Therefore, we solve the Procrustes problem by finding Q orthogonal that maximizes

〈
Q,BTA

〉
=
〈
Q,UΣV T

〉
=
〈
UTQV,Σ

〉
=

p∑
i=1

(UTQV)iiσii,

where σ1, . . . , σp are the nonzero singular values of BTA. Since UTQV is itself
orthogonal, we have |(UTQV)ii| ≤ 1, for all i. Thus,

〈
Q,BTA

〉
≤

p∑
i=1

σii,

and this upper bound is attained by choosing UTQV = I. Therefore, Q := UV T is
optimal for the Procrustes problem (3.3).

From Theorem 3.1, we have the following useful consequence.

Proposition 3.2. Let A,B ∈ Rm×n. Then AAT = BBT if and only if there exists
an orthogonal Q ∈ Rn×n such that BQ = A.

49

Proof. Clearly, if BQ = A for some orthogonal Q ∈ Rn×n, then AAT = BQQTBT =
BBT . Now suppose that AAT = BBT . Let BTA = UΣV T be the singular value
decomposition of BTA. From Theorem 3.1, we have that Q := UV T minimizes
‖BQ− A‖F . Therefore, we need only show that ‖BQ− A‖F = 0. Observe that

‖BQ− A‖2
F = 〈BQ− A,BQ− A〉

= trace
(
(BQ− A)T (BQ− A)

)
= trace

(
BTB −QTBTA− ATBQ+ ATA

)
.

We now claim that QTBTA = ATA. First we observe that, since AAT = BBT , we
have (

ATA
)2

= ATAATA = ATBBTA = V ΣUTUΣV T = V Σ2V T .

Thus, ATA = V ΣV T , since the positive semidefinite root of a positive semidefinite
matrix is unique. Therefore, QTBTA = V UTUΣV T = V ΣV T = ATA. Similarly,
we can show that ATBQ = ATA. Thus,

‖BQ− A‖2
F = trace

(
BTB −QTBTA− ATBQ+ ATA

)
= trace

(
BTB − ATA− ATA+ ATA

)
= trace

(
BTB − ATA

)
= trace

(
BBT − AAT

)
= 0,

so BQ = A.

Therefore, the method of discarding the constraint P2 = A discussed above is
justified. This suggests a simple approach for solving the sensor network localization
problem. First we solve the equivalent low-dimensional Euclidean distance matrix
completion problem,

find Ȳ ∈ Sn+ ∩ SnC
such that H ◦ K

(
Ȳ
)

= H ◦D
rank(Ȳ) = r.

(3.4)

Note that without the anchor constraint, we can now assume that our points are
centred at the origin, hence the constraint Ȳ ∈ SnC . Factoring Ȳ = PP T , for some
P ∈ Rn×r, we then translate P so that P T

2 e = 0. Similarly, we translate the anchors
so that AT e = 0. We then apply an orthogonal transformation to align P2 with the
anchors positions in A by solving a Procrustes problem using the solution technique
in Theorem 3.1. Finally, if we translated to centre the anchors, we simply translate
everything back accordingly.

However, as problems with rank constraints are often NP-hard, problem (3.4)
may be very hard to solve. In fact, we saw in Section 2.6.4 that the general prob-
lem (3.4) can be reduced to the NP-complete problem Partition. Therefore, we

50

now turn to investigating semidefinite relaxations of the sensor network localization
problem.

Based on our discussion in this section, the relaxation that immediately comes
to mind is the semidefinite relaxation of the low-dimensional Euclidean distance
matrix completion problem (2.15), which is given by relaxing the rank constraint
in problem (3.4); that is, we get the relaxation

find Ȳ ∈ Sn+ ∩ SnC
such that H ◦ K

(
Ȳ
)

= H ◦D. (3.5)

However, as we will see in the next section, it is possible to take advantage of
the structure available in the anchor constraints. We will show how this structure
allows us to reduce the size of the semidefinite relaxation.

3.1.2 Semidefinite relaxation of the SNL problem

To get a semidefinite relaxation of the sensor network localization problem, we start
by writing problem (3.1) as,

find X ∈ R(n−m)×r

such that H ◦ K
(
Ȳ
)

= H ◦D

Ȳ =

[
XXT XAT

AXT AAT

]
.

(3.6)

Next we show that the nonlinear second constraint on Ȳ , the block-matrix con-
straint, may be replaced by a semidefinite constraint, a linear constraint, and a
rank constraint on Ȳ .

Proposition 3.3. Let A ∈ Rm×r have full column rank, and let Ȳ ∈ Sn be parti-
tioned as

Ȳ =:

[n−m m

n−m Ȳ11 Ȳ12

m Ȳ T
12 Ȳ22

]
.

Then the following hold:

1. If Ȳ22 = AAT and Ȳ � 0, then there exists X ∈ R(n−m)×r such that

Ȳ12 = XAT ,

and X is given uniquely by X = Ȳ12A
†T .

2. There exists X ∈ R(n−m)×r such that Ȳ =

[
XXT XAT

AXT AAT

]
if and only if Ȳ

satisfies 
Ȳ � 0

Ȳ22 = AAT

rank(Ȳ) = r

 .

51

Proof. Suppose that Ȳ22 = AAT and Ȳ � 0; let X := Ȳ12A
†T . Since rank(A) = r

and range(A) = null(AT)⊥, there exists a full column rank matrix V ∈ Rm×(m−r)

such that range(V) = null(AT). Then, ATV = 0, so we have[
I 0
0 V

]T [
Ȳ11 Ȳ12

Ȳ T
12 AAT

] [
I 0
0 V

]
=

[
Ȳ11 Ȳ12V

V T Ȳ T
12 0

]
� 0,

since Ȳ � 0 and Ȳ22 = AAT . It is well-known that if a positive semidefinite matrix
has a zero diagonal entry, then the entire row and column corresponding to that
diagonal entry are also zero. Therefore, V T Ȳ T

12 = 0, implying that

range(Ȳ T
12) ⊆ null(V T) = range(V)⊥ = range(A).

Thus, there exists Φ ∈ Rr×(m−r) such that Ȳ T
12 = AΦ. Since A is full column rank,

we have
Φ = (ATA)−1AT Ȳ T

12 = A†Ȳ T
12 = XT .

Therefore, X satisfies

Ȳ =

[
Ȳ11 XAT

AXT AAT

]
. (3.7)

Moreover, if X̄ also satisfies (3.7), then A(X̄T −XT) = 0, so X̄ = X, since A has
full column rank. Thus, we have shown Item 1.

To show Item 2, we first note that if there exists X ∈ R(n−m)×r such that

Ȳ =

[
XXT XAT

AXT AAT

]
,

then Ȳ � 0, Ȳ22 = AAT , and rank(Ȳ) = r. Now suppose that Ȳ � 0, Ȳ22 = AAT ,
and rank(Ȳ) = r. Based on the result in Item 1, it remains to show that Ȳ11 =
XXT . Since Ȳ � 0 and rank(Ȳ) = r, there exists P̄ ∈ Rn×r such that Ȳ = P̄ P̄ T .
Let P̄ be partitioned as

P̄ =:

[r

n−m P̄1

m P̄2

]
.

Then we have:

Ȳ11 = P̄1P̄
T
1 ;

XAT = Ȳ12 = P̄1P̄
T
2 ;

AAT = Ȳ22 = P̄2P̄
T
2 .

Since AAT = P̄2P̄
T
2 , by Proposition 3.2 there exists Q ∈ Rr×r such that P̄2Q = A.

Thus,
AXT = P̄2P̄

T
1 = AQT P̄ T

1 ,

so XT = QT P̄ T
1 , since A has full column rank. Therefore, we have

Ȳ11 = P̄1P̄
T
1 = XQTQXT = XXT ,

completing the proof of Item 2.

52

Now, by Proposition 3.3, we have that problem (3.1) is equivalent to

find Ȳ ∈ Sn+
such that H ◦ K

(
Ȳ
)

= H ◦D
Ȳ22 = AAT

rank(Ȳ) = r.

(3.8)

Relaxing the hard rank constraint, we obtain the semidefinite relaxation of the
sensor network localization problem:

find Ȳ ∈ Sn+
such that H ◦ K

(
Ȳ
)

= H ◦D
Ȳ22 = AAT

(3.9)

As in Proposition 2.48, this relaxation is equivalent to the Lagrangian relaxation of
the sensor network localization problem (3.8). Moreover, this relaxation essentially
allows the sensors to move into a higher dimension. To obtain a solution in Rr, we
may either project the positions in the higher dimension onto Rr, or we can try a
best rank-r approximation approach; we will say more on this later.

3.1.3 Further transformations of the semidefinite relaxation
of the SNL problem

From Proposition 3.3, we have that Ȳ � 0 and Ȳ22 = AAT implies that

Ȳ =

[
Y XAT

AXT AAT

]
for some Y ∈ Sn−m+ and X = Ȳ12A

†T ∈ R(n−m)×r. Now we make the key observation
that having anchors in a Euclidean distance matrix problem implies that our feasible
points are restricted to a face of the semidefinite cone. This is because, if Ȳ is
feasible for problem (3.9), then

Ȳ =

[
I 0
0 A

] [
Y X
XT I

] [
I 0
0 A

]T
∈ UASn−m+r

+ UT
A ,

where

UA :=

[n−m r

n−m I 0
m 0 A

]
∈ Rn×(n−m+r). (3.10)

The fact that we must have

[n−m r

n−m Y X
r XT I

]
∈ Sn−m+r

+

53

follows from Ȳ � 0 and the assumption that A has full column rank (hence UA has
full column rank). Therefore, we obtain the following reduced problem:

find Z ∈ Sn−m+r
+

such that H ◦ K
(
UAZU

T
A

)
= H ◦D

Z22 = I,
(3.11)

where Z is partitioned as

Z =:

[n−m r

n−m Z11 Z12

r ZT
12 Z22

]
. (3.12)

Since Y −XXT is the Schur complement of the matrix[
Y X
XT I

]
with respect to the positive definite identity block, we have that

Y � XXT ⇔
[
Y X
XT I

]
� 0.

Therefore, we have a choice of a larger linear semidefinite constraint, or a smaller
quadratic semidefinite constraint. See Chua and Tunçel (2008) for a theoretical
discussion on the barriers associated with these two represenations; see Ding et al.
(2008a) and Ding et al. (2008b) for a numerical comparison.

3.1.4 The Biswas-Ye formulation

We now present the Biswas-Ye formulation Biswas and Ye (2004); Biswas et al.
(2006); Biswas and Ye (2006); Biswas (2007); Biswas et al. (2008) of the semidefinite
relaxation of the sensor network localization problem. First we let Y := XXT be
the Gram matrix of the rows of the matrix X ∈ R(n−m)×r. Letting eij ∈ Rn−m be
the vector with 1 in the ith position, −1 in the jth position, and zero elsewhere, we
have

‖xi − xj‖2 = xTi xi + xTj xj − 2xTi xj

= eTijXX
T eij

=
〈
eije

T
ij, Y

〉
,

for all i, j = 1, . . . , n−m. Furthermore, letting ei ∈ Rn−m be the vector with 1 in
the ith position, and zero elsewhere. Then

‖xi − aj‖2 = xTi xi + aTj aj − 2xTi aj

=

[
ei
aj

]T [
X
I

] [
X
I

]T [
ei
aj

]
=

〈[
ei
aj

] [
ei
aj

]T
,

[
Y X
XT I

]〉
,

54

for all i = 1, . . . , n −m, and j = n −m + 1, . . . , n, where we are now considering
the anchors aj to be indexed by j ∈ {n−m+ 1, . . . , n}. Let G = (N,E) be the
graph corresponding to the partial Euclidean distance matrix D. Let

Ex := {ij ∈ E : 1 ≤ i < j ≤ n−m}

be the set of edges between sensors, and let

Ea := {ij ∈ E : 1 ≤ i ≤ n−m, n−m+ 1 ≤ j ≤ n}

be the set of edges between sensors and anchors. The sensor network localization
problem can then be stated as:

find X ∈ R(n−m)×r

such that

〈[
eij
0

] [
eij
0

]T
, Z

〉
= Dij, ∀ij ∈ Ex〈[

ei
aj

] [
ei
aj

]T
, Z

〉
= Dij, ∀ij ∈ Ea

Z =

[
Y X
XT I

]
Y = XXT .

(3.13)

The Biswas-Ye semidefinite relaxation of the sensor network localization problem
is then formed by relaxing the hard constraint Y = XXT to the convex constraint
Y � XXT . As mentioned above, Y � XXT is equivalent to[

Y X
XT I

]
� 0.

Therefore, the Biswas-Ye relaxation is the linear semidefinite optimization problem

find Z ∈ Sn−m+r
+

such that

〈[
eij
0

] [
eij
0

]T
, Z

〉
= Dij, ∀ij ∈ Ex〈[

ei
aj

] [
ei
aj

]T
, Z

〉
= Dij, ∀ij ∈ Ea

Z22 = I,

(3.14)

where Z is partitioned as in equation (3.12). Clearly, we have that the Biswas-Ye
formulation (3.14) is equivalent to the Euclidean distance matrix formulation (3.11).

3.1.5 Unique localizability

The sensor network localization problem (3.1)/(3.13) is called uniquely localizable
if there is a unique solution X ∈ R(n−m)×r for problem (3.1)/(3.13) and if X̄ ∈

55

R(n−m)×h is a solution to the problem with anchors Ā :=
[
A 0

]
∈ Rm×h, then X̄ =[

X 0
]
. The following theorem from So and Ye (2007) shows that the semidefinite

relaxation is tight if and only if the sensor network localization problem is uniquely
localizable.

Theorem 3.4 ((So and Ye, 2007, Theorem 2)). Let A ∈ Rm×r such that
[
A e

]
has

full column rank. Let D be an n-by-n partial Euclidean distance matrix satisfying
D22 = K(AAT), with corresponding graph G and 0–1 adjacency matrix H. If G is
connected, the following are equivalent.

1. The sensor network localization problem (3.1)/ (3.13) is uniquely localizable.

2. The max-rank solution of the relaxation (3.11)/ (3.14) has rank r.

3. The solution matrix Z of the relaxation (3.11)/ (3.14) satisfies Y = XXT ,
where

Z =

[
Y X
XT I

]
.

Therefore, Theorem 3.4 implies that we can solve uniquely localizable instances
of the sensor network localization problem in polynomial time by solving the semidef-
inite relaxation (3.11)/(3.14). However, it is important to point out an instance of
the sensor network localization problem (3.1)/(3.13) which has a unique solution
in Rr need not be uniquely localizable. This is especially important to point out
in light of the complexity result in Aspnes et al. (2004) and Aspnes et al. (2006) in
which it is proved that there is no efficient algorithm to solve instances of the sen-
sor network localization problem having a unique solution in Rr, unless RP = NP .
This means we have two types of sensor network localization problem instances that
have a unique solution in Rr: (i) uniquely localizable, having no non-congruent so-
lution in a higher dimension; (ii) not uniquely localizable, having a non-congruent
solution in a higher dimension. Type (i) instances can be solved in polynomial
time. Type (ii) cannot be solved in polynomial time, unless RP = NP.

3.1.6 Obtaining sensor positions from the semidefinite re-
laxation

Often it can be difficult to obtain a low rank solution from the semidefinite relax-
ation of a combinatorial optimization problem. An example of a successful semidef-
inite rounding technique is the impressive result in Goemans and Williamson (1995)
for the Max-Cut problem; however, this is not always possible. For the sensor
network localization problem we must obtain sensor positions from a solution of
the semidefinite relaxation.

56

In the case of the Biswas-Ye formulation (3.14), or equivalently the Euclidean
distance matrix formulation (3.11), the sensor positions X ∈ R(n−m)×r are obtained
from a solution Z ∈ Sn−m+r

+ by letting X := Z12, where Z is partitioned as in
equation (3.12). By Proposition 3.3, under the constraints that Ȳ � 0 and Ȳ22 =
AAT , we may also compute the sensor positions as X := Ȳ12A

†T . Clearly, these are
equivalent methods for computing the sensor positions.

Another method for computing the sensor positions was briefly discussed in
Section 3.1.1 for the uniquely localizable case when rank(Ȳ) = r. Now suppose
that rank(Ȳ) > r. In this case we find a best rank-r approximation of Ȳ . For this,
we turn to the classical result of Eckart and Young (1936).

Theorem 3.5 ((Björck, 1996, Theorem 1.2.3)). Let A ∈ Rm×n and k := rank(A).
Let

A = UΣV T =
k∑
i=1

σuiv
T
i

be the singular value decomposition of A. Then the unique optimal solution of

min {‖A−X‖F : rank(X) = r}

is given by

X :=
r∑
i=1

σuiv
T
i ,

with ‖A−X‖2
F =

∑k
i=r+1 σ

2
i .

For a symmetric matrix A, we can use the eigenvalue decomposition A = UDUT

instead of the singular value decomposition; this is because the singular values of
A are equal to the absolute values of the eigenvalues of A, so the singular value
decomposition is A = UΣV T , where Σ = |D| and V is computed from U by multi-
plying appropriate columns by −1. When A � 0, its singular value decomposition
and eigenvalue decomposition are identical.

Comparing two methods

Let A ∈ Rm×r and D be an n-by-n partial Euclidean distance matrix with

D =

[
D11 D12

DT
12 K(AAT)

]
.

Let H be the 0–1 adjacency matrix corresponding to D. Suppose D has a com-
pletion D̄ ∈ En having embdim(D̄) = r. Suppose Z is a feasible solution of the
semidefinite relaxation (3.14) (or equivalently, the Euclidean distance matrix for-
mulation (3.11)).

Using a path-following interior-point method to find Z can result in a solution
with high rank. Indeed, Goldfarb and Scheinberg (1998) show that for semidefinite

57

optimization problems having strict complementarity, the central path converges
to the analytic centre of the optimal solution set (that is, the optimal solution
with maximum determinant); also see, for example, Güler and Ye (1993) for a
similar result in linear optimization. However, it is also demonstrated in Halická
et al. (2002) that there are examples of semidefinite optimization problems without
strict complementarity having a central path converging to an optimal solution that
is not the analytic centre of the optimal set.

Let Ȳ := UAZU
T
A , where UA is as defined in equation (3.10). Suppose that

k := rank(Ȳ) > r. Then K(Ȳ) is a Euclidean distance matrix completion of the
partial Euclidean distance matrix D, with

embdimK(Ȳ) = k.

Moreover, Ȳ ∈ Sn+ and Ȳ22 = AAT , so by Proposition 3.3, we have that

Ȳ =

[
Y XAT

AXT AAT

]
,

where Y := Z11 = Ȳ11 and X := Z12 = Ȳ12A
†T . Let Ȳr ∈ Sn+ be the nearest rank-r

matrix to Ȳ ∈ Sn+, in the sense of Theorem 3.5. Let P̄ ∈ Rn×k and P̄r ∈ Rn×r such
that

Ȳ = P̄ P̄ T and Ȳr = P̄rP̄
T
r .

Let P̄ and P̄r be partitioned as

P̄ =:

[r k−r

n−m P̄11 P̄12

m P̄ T
12 P̄22

]
and P̄r =:

[r

n−m P̄ ′r
m P̄ ′′r

]
.

For the first method, we have that[
P̄ T

12 P̄22

] [
P̄ T

12 P̄22

]T
= Ȳ22 = AAT =

[
A 0

] [
A 0

]T
.

Therefore, by Proposition 3.2, there exists an orthogonal matrix Q̄ ∈ Rk×k such
that [

P̄ T
12 P̄22

]
Q̄ =

[
A 0

]
.

Let P̂ := P̄ Q̄ and define the partition

P̂ =:

[r k−r

n−m P̂11 P̂12

m A 0

]
.

Therefore, we see that the semidefinite relaxation of the sensor network localization
problem has allowed the sensors to move into the higher dimension of Rk instead
of fixing the sensors to the space Rr. Now we have that

Ȳ = P̂ P̂ T =

[
P̂11P̂

T
11 + P̂12P̂

T
12 P̂11A

T

AP̂ T
11 AAT

]
,

58

implying that P̂11 = X, and Y = XXT + P̂12P̂
T
12, so

Y −XXT = P̂12P̂
T
12 � 0.

Therefore, we have that∥∥∥∥Ȳ − [XA
] [
X
A

]T∥∥∥∥
F

=
∥∥P̂12P̂

T
12

∥∥
F

=
∥∥Y −XXT

∥∥
F
.

Since rank(PP T) = r, by the definition of P̄r we have that(
k∑

i=r+1

λ2
i (Ȳ)

)1/2

=

∥∥∥∥Ȳ − [P̄ ′rP̄ ′′r
] [

P̄ ′r
P̄ ′′r

]T∥∥∥∥
F

≤
∥∥∥∥Ȳ − [XA

] [
X
A

]T∥∥∥∥
F

, (3.15)

with equality if and only if [
P̄ ′r
P̄ ′′r

] [
P̄ ′r
P̄ ′′r

]T
=

[
X
A

] [
X
A

]T
;

in other words, equality holds in (3.15) if and only if there exists Q ∈ Rr×r orthog-
onal such that [

P̄ ′r
P̄ ′′r

]
Q =

[
X
A

]
.

For the second method, we let Qr ∈ Rr×r be an orthogonal matrix that mini-
mizes

∥∥P̄ ′′r Qr − A
∥∥
F

. Since we may not have P̄ ′′r P̄
′′T
r = AAT , it is possible that∥∥P̄ ′′r Qr − A

∥∥
F
> 0.

Let P̄rQr be partitioned as

P̄rQr =:

[r

n−m X̄
n Ā

]
.

Therefore, we have the following relationship between the two different approaches
for computing sensor positions:∥∥∥∥Ȳ − [X̄Ā

] [
X̄
Ā

]T∥∥∥∥
F

≤
∥∥∥∥Ȳ − [XA

] [
X
A

]T∥∥∥∥
F

,

with equality if and only if there exists a Q ∈ Rr×r such that[
X̄
Ā

]
Q =

[
X
A

]
.

The second method can be seen getting a better approximation of Ȳ at the expense
of allowing the anchors positions to move slightly.

59

Note that we have no guarantee that X from the first method, or X̄ from the
second method, satisfy the distance constraints. That is, we may have

H ◦ K
(
PP T

)
6= H ◦D,

for

P =

[
X
A

]
or P =

[
X̄
Ā

]
.

Moreover, we have the following bounds on the approximation of the Euclidean
distance matrix K

(
Ȳ
)
:∥∥∥∥∥K (Ȳ)−K
([

X
A

] [
X
A

]T)∥∥∥∥∥
F

≤ ‖K‖F

∥∥∥∥∥Ȳ −
[
X
A

] [
X
A

]T∥∥∥∥∥
F

= 2
√
n
∥∥Y −XXT

∥∥
F

; (3.16)∥∥∥∥∥K (Ȳ)−K
([

X̄
Ā

] [
X̄
Ā

]T)∥∥∥∥∥
F

≤ ‖K‖F

∥∥∥∥∥Ȳ −
[
X̄
Ā

] [
X̄
Ā

]T∥∥∥∥∥
F

= 2
√
n

(
k∑

i=r+1

λ2
i (Ȳ)

)1/2

. (3.17)

Here we have used the fact from Lemma 2.39 that ‖K‖F = 2
√
n. Clearly, the

upper bound (3.17) for the second method is lower than upper bound (3.16) for
the first method, but this need not imply that the second method gives a better r-
dimensional approximation of the k-dimensional Euclidean distance matrix K(Ȳ).
Indeed, we ran numerical tests in Ding et al. (2008b) to compare these two methods.
We often found better results using X̄ than when using X, but this was not always
the case.

3.2 Molecular conformation

While the sensor network localization problem we have just described is a low-
dimensional Euclidean distance matrix completion problem with anchor nodes, the
molecular conformation problem can be considered as a regular anchor-free low-
dimensional Euclidean distance matrix completion problem for which we would like
to compute relative positions of the points in the low-dimensional space R3.

Nuclear magnetic resonance (NMR) can be used to measure interatomic dis-
tances in the range of 5–6Å, where 1Å = 10−10m; longer ranges of up to 8Å are
possible, but come at a cost of structural modification of the molecule Yuen et al.
(2010). Using the partial distance information obtained by NMR, we would like
to compute relative atom positions within the molecule. Our approach to the
molecular conformation problem is simple: we treat it exactly as a low-dimensional
Euclidean distance matrix completion problem (2.14) and solve the corresponding

60

semidefinite relaxation (2.17) using the facial reduction techniques and algorithm
we develop in Chapter 4. While this simple approach is reasonable, it may also
be desirable to incorporate inequality constraints for flexible atomic bonds, or even
angle constraints into the model; however, we only consider simple distance equality
constraints here and note that this is a topic of ongoing research. See Section 5.2
for the results of our numerical tests on protein data obtained from the Protein
Data Bank Berman et al. (2002).

61

Chapter 4

Facial Reduction for the
Euclidean Distance Matrix
Completion Problem

When strict feasibility fails, the Supporting Hyperplane Theorem 2.9 tells us that
there exists an exposed proper face of the cone containing your feasible set. When
this face is the minimal face, Proposition 2.13 implies that we obtain a strictly
feasible problem by restricting our problem to this face. Before discussing facial re-
duction for the semidefinite relaxation of the Euclidean distance matrix completion
problem,

find Y ∈ Sn+ ∩ SnC
subject to H ◦ K(Y) = H ◦D ,

or the regularized semidefinite optimization problem (see, for example, Weinberger
et al. (2004) or Biswas et al. (2006)),

maximize trace(Y)
subject to H ◦ K(Y) = H ◦D

Y ∈ Sn+ ∩ SnC
,

we first consider facial reduction on general linear optimization and semidefinite
optimization problems.

4.1 Facial reduction in linear optimization

First we look at the case of facial reduction on the linear optimization (LO) problem:

minimize cTx
subject to Ax = b

x ∈ Rn
+

, (4.1)

62

where A ∈ Rm×n has full row rank, b ∈ Rm, and c ∈ Rn. Faces of the cone Rn
+ are

giving by
F =

{
x ∈ Rn

+ : xi = 0,∀i ∈ I
}
,

for some I ⊆ 1:n. As in Theorem 2.21, we have that if problem (4.1) is feasible,
then problem (4.1) is not strictly feasible if and only if there exists y ∈ Rm such
that

bTy = 0,

0 6= ATy ≥ 0.
(4.2)

Indeed, if y ∈ Rm satisfies conditions (4.2), then for all x feasible we have(
ATy

)
x = bTy = 0,

implying that xi = 0 for all i ∈ 1:n such that
(
ATy

)
i
6= 0. Therefore, if condi-

tion (4.2) holds, then{
x ∈ Rn

+ : Ax = b
}
⊆
{
x ∈ Rn

+ : xi = 0, ∀i ∈ I
}
,

where I := supp(ATy) =
{
i : (ATy)i 6= 0

}
. In this case, we have

face
{
x ∈ Rn

+ : Ax = b
}

E
{
x ∈ Rn

+ : xi = 0, ∀i ∈ I
}
.

Let J := (1:n) \ I and t := |J |. Then problem (4.1) reduces to

minimize c[J]T x̄
subject to A[:,J]x̄ = b[J]

x̄ ∈ Rt
+

. (4.3)

Note that in problem (4.3), A[:,J] ∈ Rm×t may not have full row rank. This
implies that we can also reduce the number of constraints by removing linearly
dependent rows, leaving us with Ā ∈ Rk×t and b̄ ∈ Rk. Letting c̄ := c[J] ∈ Rt, we
now have the equivalent reduced problem

minimize c̄T x̄
subject to Āx̄ = b̄

x̄ ∈ Rt
+

. (4.4)

If the face we identified was minimal, then problem (4.4) is also strictly feasible.

The technique discussed here is reminiscent of the linear optimization prepro-
cessing techniques discussed in, for example, Brearley et al. (1975), Andersen and
Andersen (1995), and more recently in Mészáros and Suhl (2003).

63

4.2 Facial reduction in semidefinite optimization

In the case of semidefinite optimization (SDO),

minimize 〈C,X〉
subject to 〈Ai, X〉 = bi, ∀i = 1, . . . ,m

X ∈ Sn+
, (4.5)

where Ai ∈ Sn, for i = 1, . . . ,m, are linearly independent, b ∈ Rm, and C ∈ Sn.
Let U ∈ Rn×t have full column rank and satisfy

face
{
X ∈ Sn+ : 〈Ai, X〉 = bi, ∀i

}
= USt+UT .

Then problem (4.5) is equivalent to the strictly feasible problem

minimize
〈
C,UZUT

〉
subject to

〈
Ai, UZU

T
〉

= bi, ∀i = 1, . . . ,m
Z ∈ St+

,

which, in turn, is equivalent to

minimize
〈
C̄, Z

〉
subject to

〈
Āi, Z

〉
= bi, ∀i = 1, . . . ,m

Z ∈ St+
, (4.6)

where Āi := UTAiU ∈ St, for i = 1, . . . ,m, and C̄ := UTCU ∈ St. A very nice
example of this type of reduction can be seen in (Tunçel, 2001, Section 3.1) for
semidefinite relaxations of nonconvex sets which are not full dimensional; as we
see here, the reduction in Tunçel (2001) has the effect of producing a semidefinite
relaxation that is strictly feasible.

Let A : Sn → Rm be defined by AX :=
(〈
Āi, Z

〉)m
i=1

. As seen in Theorem 2.21,
if problem (4.5) is feasible, then problem (4.5) is not strictly feasible if and only if
there exists some y ∈ Rm such that 0 6= A∗y � 0 and bTy = 0. Moreover, if y ∈ Rm

such that 0 6= A∗y � 0 and bTy = 0, then

face
{
X ∈ Sn+ : AX = b

}
E Sn+ ∩ {A∗y}

⊥ = USt+UT / Sn+,

where U ∈ Rn×t has full column rank and satisfies range(U) = null(A∗y).

As in the case of linear optimization, we may now have that the set of matrices{
Āi : i = 1, . . . ,m

}
is linearly dependent. Therefore, we can determine a maximal

subset I ⊆ 1:m such that
{
Āi : i ∈ I

}
is linearly independent. Letting k := |I|

and b̄ := b[I] ∈ Rk, we have

minimize
〈
C̄, Z

〉
subject to Ā(Z) = b̄

Z ∈ St+
, (4.7)

where Ā : St → Rk is defined by Ā(Z) :=
(〈
Āi, Z

〉)
i∈I .

More information on semidefinite facial reduction can by found in, for example,
Ramana et al. (1997) and Cheung et al. (2010).

64

4.3 Single clique facial reduction

Recall that the feasible set of the semidefinite relaxation of the Euclidean distance
matrix problem is given by

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
,

where D is an n-by-n partial Euclidean distance matrix, and H is the corresponding
0–1 adjacency matrix.

For a general semidefinite optimization problem, it is generally not possible to
easily identify the minimal face containing the feasible set. However, because of
the structure available to us, we now show how we can identify the minimal face
containing the semidefinite matrices satisfying a subset of the constraints corre-
sponding to a clique in the graph.

Theorem 4.1 (Single Clique Facial Reduction Theorem). Let D be an n-by-n
partial Euclidean distance matrix and let C ⊆ 1:n be a clique in the corresponding
graph. Let t := embdim(D[C]). Assume, without loss of generality, that C = 1:k,
and let U ∈ Rn×(n−|C|+t+1) be defined as follows:

• let UC ∈ R|C|×t have full column rank and satisfy range(UC) = range(K†(D[C]));

• let Ū :=
[
UC e

]
∈ R|C|×(t+1);

• let U :=

[t+1 n−|C|

|C| Ū 0
n−|C| 0 I

]
∈ Rn×(n−|C|+t+1).

Then U has full column rank, e ∈ range(U), and

face
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
= USn−|C|+t+1

+ UT .

Proof. First we note that since K†(D[C]) � 0 and range(UC) = range(K†(D[C])),
there exists some ΣC ∈ St++ such that

K†(D[C]) = UCΣCU
T
C .

Since K†(D[C]) ∈ S |C|C , we have UT
C e = 0. Therefore, e /∈ range(UC), so Ū has

full column rank, implying that U has full column rank. Moreover, e ∈ range(U)
clearly holds. Let V̄ ∈ R|C|×(|C|−t−1) have full column rank and satisfy range(V̄) =
range(Ū)⊥ = null(ŪT); in particular, note that V̄ T e = 0, since e ∈ range(Ū) and
range(Ū) = null(V̄ T). Let

V :=

[|C|−t−1

|C| V̄
n−|C| 0

]
∈ Rn×(|C|−t−1).

65

Then range(V) = range(U)⊥ = null(UT). Now we will show that V V T ∈ F c, where

F := face
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
.

The dual problem of
minimize 0
subject to K(Y [C]) = D[C]

Y � 0

is given by
maximize −〈Λ, D[C]〉

subject to

[
K∗(Λ) 0

0 0

]
� 0.

As expected, Λ is dual feasible if and only if Λ ∈ (E |C|)∗. Therefore, by Proposi-
tion 2.19, we have that

face

{
S ∈ Sn+ : S =

[
K∗(Λ) 0

0 0

]
, 〈Λ, D[C]〉 = 0

}
E F c.

Let Λ := K†∗(V̄ V̄ T). Then K∗(Λ) = K∗K†∗(V̄ V̄ T) = V̄ V̄ T , since K∗K†∗ is the

orthogonal projection onto range(K∗) = S |C|C , and since V̄ T e = 0. Moreover,

〈Λ, D[C]〉 =
〈
K†∗(V̄ V̄ T), D[C]

〉
=
〈
V̄ V̄ T ,K†(D[C])

〉
=
〈
V̄ V̄ T , UCΣCU

T
C

〉
= 0,

since V̄ TUC = 0. Thus,

S :=

[
K∗(Λ) 0

0 0

]
=

[
V̄ V̄ T 0

0 0

]
= V V T ∈ F c,

as claimed.

Since V V T ∈ F c, by Proposition 2.11, we have that

face
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
E Sn+ ∩

{
V V T

}⊥
= USn−|C|+t+1

+ UT .

By Proposition 2.13, to show that

face
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
= USn−|C|+t+1

+ UT ,

we simply must show that there exists Ȳ ∈
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
such that

Ȳ = UZUT for some Z ∈ Sn−|C|+t+1
++ . To achieve this, we begin by letting

Ξ̄ :=

[
ΣC 0
0 1

]
∈ St+1

++ and P̄ := Ū Ξ̄1/2 ∈ R|C|×(t+1).

66

Note that

P̄ P̄ T = Ū Ξ̄ŪT

=
[
UC e

] [ΣC 0
0 1

] [
UC e

]T
= UCΣCU

T
C + eeT ,

implying that

K
(
P̄ P̄ T

)
= K

(
UCΣCU

T
C + eeT

)
= K

(
UCΣCU

T
C

)
= K

(
K†(D[C])

)
= D[C].

Furthermore, let

P :=

[t+1 n−|C|

|C| P̄ 0
n−|C| 0 I

]
∈ Rn×(n−|C|+t+1) and Ȳ := PP T .

Then

Ȳ =

[|C| n−|C|

|C| P̄ P̄ T 0
n−|C| 0 I

]
=

[
Ū Ξ̄ŪT 0

0 I

]
= UZUT ∈ Sn+,

where Z is defined as

Z :=

[t+1 n−|C|

t+1 Ξ̄ 0
n−|C| 0 I

]
∈ Sn−|C|+t+1

++ .

Finally, note that K
(
Ȳ [C]

)
= K

(
P̄ P̄ T

)
= D[C], implying that

Ȳ ∈
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
∩ relint

(
USn−|C|+t+1

+ UT
)
,

so we have face
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
= USn−|C|+t+1

+ UT .

4.3.1 An alternate proof

Our alternative proof of Theorem 4.1 requires the following technical lemmas. We
will also need these lemmas for results we prove in later sections. The first lemma
is inspired by the following observation: if Y ∈ Sn+ and D := K(Y) ∈ En, then
K(Y) = K(K†(D)), so Y ∈ K†(D) + null(K), implying that

Y = K†(D) +De(y), for some y ∈ Rn.

If B := K†(D), then Be = 0, and Y = B + De(y) � 0. However, a more general
result is possible using the linear map Dv : Rn → Sn defined by

Dv(y) := yvT + vyT ,

where v ∈ Rn.

67

Lemma 4.2 (Range Lemma). Let B ∈ Sn, Bv = 0, v 6= 0, y ∈ Rn and Y :=
B +Dv(y). If Y � 0, then

y ∈ range(B) + cone {v}

and
range(Y) ⊆ range

([
B v

])
.

Proof. First suppose, for the sake of contradiction, that y /∈ range(B) + span {v} =
range

([
B v

])
. Then y can be written as the orthogonal decomposition

y = Bu+ βv + ȳ,

where 0 6= ȳ ∈ range
([
B v

])⊥
= null

([
B v

]T)
. Note that ȳ satisfies

Bȳ = 0 and vT ȳ = 0.

To get a contradiction with the assumption that Y � 0, we let

z :=
1

2

v

‖v‖2
− (1 + |β|) ȳ

‖ȳ‖2
,

and observe that:

Bz = 0;

vT z =
1

2
;

ȳT z = −(1 + |β|).

Then

zTY z = zTDv(y)z

= zT
(
yvT + vyT

)
z

= 2(zTv)yT z

= yT z

= (Bu+ βv + ȳ)T z

=
1

2
β + ȳT z

<
1

2
(1 + |β|) + ȳT z

= −1

2
(1 + |β|)

< 0,

which gives us the desired contradiction. Therefore, y ∈ range(B) + span {v}.

68

To show that y ∈ range(B) + cone {v}, we suppose that y = Bu+ βv, and aim
to show that β ≥ 0. Since Bv = 0, we have vTy = βvTv. Then,

vTY v = vTDv(y)v

= vT
(
yvT + vyT

)
v

= 2vTyvTv

= 2β(vTv)2.

Since Y � 0, we have 2β(vTv)2 ≥ 0. This implies that β ≥ 0, since v 6= 0.

Finally, since y = Bu+ βv, we have

Y = B + vyT + yvT

= B + vuTB +BuvT + 2βvvT

= B
(
I + uvT

)
+ v (Bu+ 2βv)T

so range(Y) ⊆ range
([
B v

])
.

In the next lemma, we show that if Ȳ ∈ Sk+, then we can use the minimal face
of Sk+ containing Ȳ to find an expression for the minimal face of Sn+ that contains

Sn+(1:k, Ȳ) :=
{
Y ∈ Sn+ : Y [1:k] = Ȳ

}
.

Lemma 4.3 (Face Lemma). Let Ū ∈ Rk×t have full column rank, and let

U :=

[t n−k

k Ū 0
n−k 0 I

]
.

If face
{
Ȳ
}

E ŪSt+ŪT , then

faceSn+(1:k, Ȳ) E USn−k+t
+ UT .

Furthermore, if face
{
Ȳ
}

= ŪSt+ŪT , then

faceSn+(1:k, Ȳ) = USn−k+t
+ UT .

Proof. First, suppose that face
{
Ȳ
}

E ŪSt+ŪT . Since Ȳ ∈ ŪSt+ŪT , then Ȳ =

Ū Z̄ŪT , for some Z̄ ∈ St+. Let Y ∈ Sn+(1:k, Ȳ) and choose V̄ ∈ Rk×(k−t) with full
column rank satisfying range(V̄) = range(Ū)⊥ = null(ŪT); note that V̄ T Ȳ V̄ = 0.
Let

Y =:

[k n−k

k Ȳ Y T
21

n−k Y21 Y22

]
and V :=

[k−t n−k

k V̄ 0
n−k 0 I

]
.

Then

V TY V =

[
0 V̄ TY T

21

Y21V̄ Y22

]
� 0,

69

implying that V̄ TY T
21 = 0. Thus, range(Y T

21) ⊆ null(V̄ T) = range(V̄)⊥ = range(Ū),
so Y T

21 = ŪX, for some X ∈ Rt×(n−k). Therefore, we can write

Y =

[
Ū 0
0 I

] [
Z̄ X
XT Y22

] [
Ū 0
0 I

]T
=: UMUT .

Since Y � 0, we have vTMv ≥ 0, for all v ∈ range(UT). However, U ∈ Rn×(n−k+t)

has full column rank, so range(UT) = Rn−k+t. Therefore, M � 0, implying that
Y ∈ USn−k+t

+ UT . Thus, Sn+(1:k, Ȳ) ⊆ USn−k+t
+ UT , so

faceSn+(1:k, Ȳ) E USn−k+t
+ UT .

Now suppose that face
{
Ȳ
}

= ŪSt+ŪT . Then, by Proposition 2.13, Ȳ ∈
relint

(
ŪSt+ŪT

)
, so Ȳ = Ū Z̄ŪT , for some Z̄ ∈ St++. Letting

Ŷ :=

[
Ū 0
0 I

] [
Z̄ 0
0 I

] [
Ū 0
0 I

]T
=

[
Ȳ 0
0 I

]
,

we see that Ŷ ∈ Sn+(1:k, Ȳ)∩ relint
(
USn−k+t

+ UT
)
. Since Sn+(1:k, Ȳ) ⊆ USn−k+t

+ UT ,
Proposition 2.13 implies that

faceSn+(1:k, Ȳ) = USn−k+t
+ UT .

We are now in a position to provide our alternative proof of the Single Clique
Facial Reduction Theorem.

Alternate Proof of Theorem 4.1. Let Y ∈ Sn+ such that K(Y [C]) = D[C]. Then
Y [C] ∈ K†(D[C]) + null(K) = K†(D[C]) + range(De). Therefore, there exists
y ∈ R|C| such that

Y [C] = K†(D[C]) +De(y).

Since Y � 0, we have Y [C] � 0. Thus, by Lemma 4.2,

range(Y [C]) ⊆ range
([
K†(D[C]) e

])
= range

(
Ū
)
.

Therefore, by Lemma 2.14, we have that Y [C] ∈ ŪSt+1
+ ŪT , implying that

face {Y [C]} E ŪSt+1
+ ŪT .

Since we are assuming that C = 1:k, by Lemma 4.3, we have

faceSn+(C, Y [C]) E USn−|C|+t+1
+ UT ,

so Y ∈ USn−|C|+t+1
+ UT . Therefore,{

Y ∈ Sn+ : K(Y [C]) = D[C]
}
⊆ USn−|C|+t+1

+ UT ,

implying that

face
{
Y ∈ Sn+ : K(Y [C]) = D[C]

}
E USn−|C|+t+1

+ UT .

The remainder of the proof continues as in the original proof of Theorem 4.1.

70

4.4 Facial reduction algorithm overview

Let D be an n-by-n partial Euclidean distance matrix, let G be the corresponding
graph, and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
(4.8)

be the feasible set of the Euclidean distance matrix completion problem (2.13),
where H is the 0–1 adjacency matrix of G. For each node i = 1, . . . , n, let Ci be a
clique in the graph G such that

i ∈ Ci, for all i = 1, . . . , n.

Note that ∪ni=1Ci = 1:n. For each clique Ci, let

Fi :=
{
Y ∈ Sn+ : K(Y [Ci]) = D[Ci]

}
.

Then

F ⊆

(
n⋂
i=1

Fi

)
∩ SnC .

For i = 1, . . . , n, let

Fi := face(Fi), ti := embdim(D[Ci]),

and, as in Theorem 4.1, let Ui ∈ Rn×(n−|Ci|+ti+1) with full column rank satisfy
e ∈ range(Ui) and

Fi = UiSn−|Ci|+ti+1
+ UT

i .

Therefore, we have

face(F) E

(
n⋂
i=1

Fi

)
∩ SnC

=

(
n⋂
i=1

UiSn−|Ci|+ti+1
+ UT

i

)
∩ SnC

=
(
USt+1

+ UT
)
∩ SnC ,

where U ∈ Rn×(t+1) is full column rank and satisfies

range(U) =
n⋂
i=1

range(Ui). (4.9)

This implies that the feasible set F in equation (4.8) satisifies

F ⊆
{
Y ∈

(
USt+1

+ UT
)
∩ SnC : H ◦ K(Y) = H ◦D

}
.

71

4.4.1 Facial reduction algorithm for a fixed embedding di-
mension

When D is a partial Euclidean distance matrix in Rr, we may take the following
approach. Let

C := {i : embdim(D[Ci]) = r}.
For i, j ∈ C, we have Ui ∈ Rn×(n−|Ci|+r+1) and Ui ∈ Rn×(n−|Cj |+r+1). We will show
that, when |Ci ∩ Cj| ≥ r + 1, and this intersection is “rigid”, then

dim(range(Ui) ∩ range(Uj)) = n− |Ci ∪ Cj|+ r + 1.

Therefore, we can iteratively intersect faces in a stable way that maintains a certain
dimension. Having successfully combined the faces for the cliques in B ⊆ C, we
have that

face(F) E
(
USn−|C|+r+1

+ UT
)
∩ SnC ,

where C := ∪i∈BCi.

4.5 Single subset facial reduction

We now show that if we have determined a face containing the feasible set of a
subproblem, then we have determined a face containing the feasible set of the
whole problem, even if that subproblem is not a clique.

Theorem 4.4 (Single Subset Facial Reduction Theorem). Let D be an n-by-n
partial Euclidean distance matrix, let H be the corresponding 0–1 adjacency matrix,
and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let α ⊆ 1:n be an arbitrary subset,

Fα :=
{
Y ∈ Sn+ ∩ SnC : H[α] ◦ K(Y [α]) = H[α] ◦D[α]

}
,

and
F̄α :=

{
Y ∈ S |α|+ ∩ S

|α|
C : H[α] ◦ K(Y) = H[α] ◦D[α]

}
.

Assume, without loss of generality, that α = 1:k. Let Ū ∈ R|α|×(t+1) with full column
rank satisfy e ∈ range(Ū) and

face(F̄α) E
(
ŪSt+1

+ ŪT
)
∩ S |α|C . (4.10)

Let

U :=

[t+1 n−|α|

|α| Ū 0
n−|α| 0 I

]
∈ Rn×(n−|α|+t+1).

Then
face(Fα) E

(
USn−|α|+t+1

+ UT
)
∩ SnC . (4.11)

72

Proof. Let Y ∈ Fα. Then Y ∈ Sn+ ∩ SnC and H[α] ◦ K(Y [α]) = H[α] ◦D[α]. Note

that K(Y [α]) = KK†K(Y [α]) = K(JY [α]J). Moreover, JY [α]J ∈ S |α|+ ∩S
|α|
C . Thus,

since JY [α]J satisfies

H[α] ◦ K(JY [α]J) = H[α] ◦D[α],

we have that JY [α]J ∈ F̄α, so range(JY [α]J) ⊆ range(Ū). Moreover, since
null(K) = range(De) and K(Y [α]− JY [α]J) = 0, we have Y [α] = JY [α]J +De(y),
for some y ∈ R|α|. Since Y [α] � 0 and JY [α]Je = 0, by Lemma 4.2 we have that

range(Y [α]) ⊆ range(
[
JY [α]J e

]
) ⊆ range(Ū),

since range(JY [α]J) ⊆ range(Ū) and e ∈ range(Ū). Therefore, face {Y [α]} E
ŪSt+1

+ ŪT . Since Ū has full column rank, Lemma 4.3 implies that

faceSn+(α, Y [α]) E USn−|α|+t+1
+ UT ,

where Sn+(α, Y [α]) =
{
X ∈ Sn+ : X[α] = Y [α]

}
. Since Y ∈ Sn+(α, Y [α]), we now

have that Y ∈
(
USn−|α|+t+1

+ UT
)
∩ SnC , completing the proof that equation (4.11)

holds.

4.6 Disjoint subsets facial reduction

In some situations, we are not able to collect all nodes of the graph into a single set
described by a small dimensional face. Instead we may have a collection of disjoint
sets of nodes, the distance constraints given by each set constraining us to some
determined face. In this case, it is easy to determine a face containing the entire
problem. We find that this face is simply given by a block-diagonal matrix, which
we now give in the following theorem.

Theorem 4.5 (Disjoint Subsets Facial Reduction Theorem). Let D be an n-by-n
partial Euclidean distance matrix, let H be the corresponding 0–1 adjacency matrix,
and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let α1, . . . , α` ⊆ 1:n be a collection of pairwise disjoint sets, and assume, without
loss of generality, that αi = (ki−1 + 1):ki, for i = 1, . . . , `, with k0 = 0. Let

α :=
⋃̀
i=1

αi = 1:|α|.

For i = 1, . . . , `, let

Fi :=
{
Y ∈ Sn+ : H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi]

}
,

73

and let Ūi ∈ R|αi|×(ti+1) with full column rank satisfy e ∈ range(Ūi) and

Ui :=


ki−1 ti+1 n−ki

ki−1 I 0 0
|αi| 0 Ūi 0
n−ki 0 0 I

 ∈ Rn×(n−|αi|+ti+1)

such that
face(Fi) E UiSn−|αi|+ti+1

+ UT
i .

Let

U :=


t1+1 ... t`+1 n−|α|

|α1| Ū1 . . . 0 0
...

...
. . .

...
...

|α`| 0 . . . Ū` 0
n−|α| 0 . . . 0 I

 ∈ Rn×(n−|α|+t+1),

where t :=
∑`

i=1 ti + `− 1. Then e ∈ range(U) and

range(U) =
⋂̀
i=1

range(Ui)

and
face(F) E

(
USn−|α|+t+1

+ UT
)
∩ SnC .

Proof. Clearly we have e ∈ range(U). Suppose x ∈ range(U). Then

x =


Ū1v1

...
Ū`v`
v`+1

 ,
for some v =

[
v1; · · · ; v`; v`+1

]
∈ Rn−|α|+t+1. This clearly implies that x ∈ range(Ui),

for all i = 1, . . . , `, so x ∈ ∩`i=1range(Ui). Conversely, suppose x ∈ ∩`i=1range(Ui).
Then, for i = 1, . . . , `, there exist wi ∈ Rn−|αi|+ti+1 such that x = Uiwi. Therefore,

x = U1w1 = · · · = U`w` =


Ū1v1

...
Ū`v`
v`+1

 ,
where vi ∈ Rti+1 is chosen to be the appropriate subvector of wi, for i = 1, . . . , `, and
v`+1 ∈ Rn−|α| is the last n−|α| entries of w1, for example. Therefore, x ∈ range(U).

74

Finally, since we now have that range(U) = ∩`i=1range(Ui),

face(F) E

(
n⋂
i=1

face(Fi)

)
∩ SnC

=

(
n⋂
i=1

UiSn−|αi|+ti+1
+ UT

i

)
∩ SnC

=
(
USn−|α|+t+1

+ UT
)
∩ SnC .

4.7 Rigid intersection facial reduction

Let D be an n-by-n partial Euclidean distance matrix, let H be the corresponding
0–1 adjacency matrix, and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

We now show how to combine the facial representation of two subproblems to-
gether, when these two subproblems have an intersection that is rigid. Consider
the situation in Figure 4.1. In Figure 4.1a, we have two cliques Ci and Cj, each with
embedding dimension r = 2, such that embdim(D[Ci∩Cj]) = r. Figure 4.1b shows
a special case of this where we have a clique Ci with embedding dimension r = 2,
and a node j such that embdim(D[Ci ∩N (j)]) = r. We use N (j) to represent the
neighbours of node j; that is,

N (j) := {i ∈ N : ij ∈ E} ,

where the graph is given by G = (N,E), N is the node set, and E is the edge set.

In general, we say that the subproblems given by node subsets α1 and α2 have a
rigid intersection if, for i = 1, 2, there exists Ūi ∈ R|αi|×(r+1) with full column rank
satisfying e ∈ range(Ūi) and

face
{
Y ∈ S |αi|

+ ∩ S |αi|
C : H[αi] ◦ K(Y) = H[αi] ◦D[αi]

}
E
(
ŪiSr+1

+ ŪT
i

)
∩ S |αi|

C ,

and there exists Ȳ ∈ Sn+ ∩ SnC satisfying

H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi], for i = 1, 2,

with embdim(K(Ȳ [α1 ∩ α2])) = r.

4.7.1 Rigid face intersection

We compute the matrix U satisfying condition (4.9) by computing the intersection
of two range spaces at a time using the following lemma. Later we will prove in
Theorem 4.8 that we can always satisfy the assumptions of this lemma, allowing us
to recursively apply it in our algorithm.

75

Ci

Cj

(a) Clique union

Ci

j

(b) Node absorb

Figure 4.1: Rigid intersection

Lemma 4.6 (Rigid Face Intersection Lemma). Let α1, α2 ⊆ 1:n, α := α1∪α2, and
k := |α1 ∩ α2|. Let Ū1 ∈ R|α1|×(r+1) and Ū2 ∈ R|α2|×(r+1) be partitioned as follows:

Ū1 =:

[r+1

|α1|−k U ′1
k U ′′1

]
; Ū2 =:

[r+1

k U ′′2
|α2|−k U ′2

]
.

Let

U1 :=


r+1 |α2|−k n−|α|

|α1|−k U ′1 0 0
k U ′′1 0 0

|α2|−k 0 I 0
n−|α| 0 0 I

 ∈ Rn×(n−|α1|+r+1)

and

U2 :=


|α1|−k r+1 n−|α|

|α1|−k I 0 0
k 0 U ′′2 0

|α2|−k 0 U ′2 0
n−|α| 0 0 I

 ∈ Rn×(n−|α2|+r+1).

Let Ū ∈ R|α|×(r+1) be defined by either of the two following expressions:

Ū :=

[r+1

|α1|−k U ′1(U ′′1)†U ′′2
|α2| Ū2

]
; (4.12a)

Ū :=

[r+1

|α1| Ū1

|α2|−k U ′2(U ′′2)†U ′′1

]
. (4.12b)

76

Let

U :=

[r+1 n−|α|

|α| Ū 0
n−|α| 0 I

]
∈ Rn×(n−|α|+r+1).

If U ′′1 and U ′′2 are full column rank and range(U ′′1) = range(U ′′2), then

1. |α1 ∩ α2| ≥ r + 1;

2. range(U) = range(U1) ∩ range(U2);

3. e ∈ range(Ū1) ∩ range(Ū2) implies e ∈ range(U).

Proof. Suppose U ′′1 and U ′′2 are full column rank, and range(U ′′1) = range(U ′′2).
Clearly we have |α1 ∩ α2| ≥ r + 1, since U ′′1 , U

′′
2 ∈ R|α1∩α2|×(r+1). First we let Ū be

given by equation (4.12a). Suppose x ∈ range(U1) ∩ range(U2). Then

x =


U ′1v1

U ′′1 v1

v2

v3

 =


w1

U ′′2w2

U ′2w2

w3

 , (4.13)

for some v =
[
v1; v2; v3

]
∈ Rn−|α1|+r+1 and w =

[
w1;w2;w3

]
∈ Rn−|α2|+r+1, parti-

tioned appropriately. Since U ′′1 is full column rank, we have (U ′′1)†U1 = I. Therefore,

v1 = (U ′′1)†U ′′2w2,

implying that

x =


U ′1(U ′′1)†U ′′2w2

U ′′2w2

U ′2w2

w3

 =

[
Ū 0
0 I

] [
w2

w3

]
. (4.14)

Therefore, x ∈ range(U). Now suppose that x ∈ range(U). Then there exist
w2 ∈ Rr+1 and w3 ∈ Rn−|α| satisfying equation (4.14). Let

v1 := (U ′′1)†U ′′2w2, w1 := U ′1v1,

v2 := U ′2w2,

v3 := w3.

Since range(U ′′1) = range(U ′′2), we have U ′′1 v1 = U ′′1 (U ′′1)†U ′′2w2 = U ′′2w2. Therefore,
equation (4.13) holds, so x ∈ range(U1) ∩ range(U2). Thus,

range(U) = range(U1) ∩ range(U2)

when Ū is given by equation (4.12a). A similar argument gives the same result when
Ū is given by equation (4.12b). Finally we note that e ∈ range(Ū1) ∩ range(Ū2)
implies that

e ∈ range(U1) ∩ range(U2),

so we have e ∈ range(U).

77

4.7.2 Rigid intersection

We now show that if subproblems α1 and α2 have a rigid intersection, then their face
representations satisfy the assumptions of Lemma 4.6. First we prove the following
lemma.

Lemma 4.7. Let U ∈ Rk×(r+1). If e ∈ range(U), then

range(U) = range(JU)⊕ R {e} and rank(U) = rank(JU) + 1,

where J ∈ Rk×k is the orthogonal projector onto {e}⊥.

Proof. Suppose e = Uz ∈ range(U). First we let x = Uy ∈ range(U). Then

x = Jx+
〈x, e〉
〈e, e〉

e = JUy +
〈x, e〉
〈e, e〉

e ∈ range(JU)⊕ R {e} .

Conversely, let x = JUy + αe ∈ range(JU)⊕ R {e}. Then

Uy = JUy +
〈Uy, e〉
〈e, e〉

e = JUy +
〈Uy, e〉
〈e, e〉

Uz,

so we have JUy = U
(
y − 〈Uy,e〉〈e,e〉 z

)
. Therefore,

x = U

(
y − 〈Uy, e〉

〈e, e〉
z

)
+ αUz ∈ range(U).

Finally, if {u1, . . . , u`} is a basis of range(JU), then {u1, . . . , u`, e} is a basis of
range(JU)⊕ R {e}. Therefore, dim (range(JU)⊕ R {e}) = rank(JU) + 1.

We now give the main result of Section 4.7 which, under the assumption of rigid
intersection, provides the guarantee the assumptions of Lemma 4.6 are satisfied.

Theorem 4.8 (Rigid Intersection Facial Reduction Theorem). Let D be an n-by-n
partial Euclidean distance matrix, let H be the corresponding 0–1 adjacency matrix,
and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let α1, α2 ⊆ 1:n be arbitrary subsets, α := α1∪α2, and k := |α1∩α2|. For i = 1, 2,
let

Fi :=
{
Y ∈ Sn+ ∩ SnC : H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi]

}
,

and let Ūi =∈ R|αi|×(r+1) with full column rank satisfy e ∈ range(Ūi) and

face
{
Y ∈ S |αi|

+ ∩ S |αi|
C : H[αi] ◦ K(Y) = H[αi] ◦D[αi]

}
E
(
ŪiSr+1

+ ŪT
i

)
∩ S |αi|

C .

Let Ū1 and Ū2 be partitioned as follows:

Ū1 =:

[r+1

|α1|−k U ′1
k U ′′1

]
; Ū2 =:

[r+1

k U ′′2
|α2|−k U ′2

]
.

If there exists Ȳ ∈ F1 ∩ F2 such that embdim(D̄) = r, where D̄ := K(Ȳ [α1 ∩ α2]),
then

78

1. |α1 ∩ α2| ≥ r + 1;

2. U ′′1 , U
′′
2 ∈ Rk×(r+1) have full column rank;

3. range(U ′′1) = range(U ′′2).

Proof. Let

U1 :=


r+1 |α2|−k n−|α|

|α1|−k U ′1 0 0
k U ′′1 0 0

|α2|−k 0 I 0
n−|α| 0 0 I

 ∈ Rn×(n−|α1|+r+1)

and

U2 :=


|α1|−k r+1 n−|α|

|α1|−k I 0 0
k 0 U ′′2 0

|α2|−k 0 U ′2 0
n−|α| 0 0 I

 ∈ Rn×(n−|α2|+r+1).

Since Ū1 and Ū2 have full column rank, from Theorem 4.4, we have

face(Fi) E
(
UiSn−|αi|+r+1

+ UT
i

)
∩ SnC , for i = 1, 2. (4.15)

Now, suppose there exists Ȳ ∈ F1 ∩ F2 such that embdim(D̄) = r, where D̄ :=
K(Ȳ [α1 ∩ α2]). Since D̄ ∈ E |α1∩α2|, by Theorem 2.37 we have r ≤ |α1 ∩ α2| − 1.
Moreover, since

K†(D̄) = K†K(Ȳ [α1 ∩ α2]) = JȲ [α1 ∩ α2]J,

Theorem 2.37 implies that rank(JȲ [α1 ∩ α2]J) = r. Now, since Ȳ ∈ F1, we have,
from equation (4.15), that range(Ȳ) ⊆ range(U1). Therefore,

range(Ȳ [α1 ∩ α2]) ⊆ range(U ′′1),

implying that
range(JȲ [α1 ∩ α2]J) ⊆ range(JU ′′1).

Since e ∈ range(U ′′1) we have from Lemma 4.7 that rank(JU ′′1) = rank(U ′′1) − 1.
Since U ′′1 ∈ R|α1∩α2|×(r+1), we have rank(U ′′1) ≤ r + 1, so

r = rank(JȲ [α1 ∩ α2]J) ≤ rank(JU ′′1) ≤ r.

Therefore, rank(JU ′′1) = r and

range(JȲ [α1 ∩ α2]J) = range(JU ′′1). (4.16)

Now, by Lemma 4.7, we have that

range(U ′′1) = range(JU ′′1)⊕ R {e}

79

Cj

Ci

(a) Clique union

Ci

j

(b) Node absorb

Figure 4.2: Non-rigid intersection

and
rank(U ′′1) = rank(JU ′′1) + 1 = r + 1,

so U ′′1 is full column rank. Similarly, since Ȳ ∈ F2, we have that U ′′2 is full column
rank and

range(JȲ [α1 ∩ α2]J) = range(JU ′′2). (4.17)

Thus, by equations (4.16) and (4.17), we have that range(JU ′′1) = range(JU ′′2)
Therefore,

range(U ′′1) = range(JU ′′1)⊕ R {e} = range(JU ′′2)⊕ R {e} = range(U ′′2).

4.8 Non-rigid intersection facial reduction

We now consider the situation in Figure 4.2. In Figure 4.2a, we have two cliques Ci
and Cj, each with embedding dimension r = 2, such that embdim(D[Ci ∩ Cj]) =
r − 1. Figure 4.2b shows a special case of this where we have a clique Ci with
embedding dimension r = 2, and a node j such that embdim(D[Ci∩N (j)]) = r−1.
Recall that N (j) is the set of neighbours of j in the graph.

In general, we say that the subproblems given by node subsets α1 and α2 have a
non-rigid intersection if, for i = 1, 2, there exists Ūi ∈ R|αi|×(r+1) with full column
rank satisfying e ∈ range(Ūi) and

face
{
Y ∈ S |αi|

+ ∩ S |αi|
C : H[αi] ◦ K(Y) = H[αi] ◦D[αi]

}
E
(
ŪiSr+1

+ ŪT
i

)
∩ S |αi|

C ,

and there exists Ȳ ∈ Sn+ ∩ SnC satisfying

H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi], for i = 1, 2,

with embdim(K(Ȳ [α1 ∩ α2])) = r − 1.

We generalize this definition and the following results in Section 4.9.

80

4.8.1 Non-rigid face intersection

We now give the following non-rigid version of Lemma 4.6.

Lemma 4.9 (Non-Rigid Face Intersection Lemma). Let α1, α2 ⊆ 1:n, such that
|α1 ∩ α2| = r. Let α := α1 ∪ α2. Let Ū1 ∈ R|α1|×(r+1) and Ū2 ∈ R|α2|×(r+1) satisfy
rank(U ′′1) = rank(U ′′2) = r and range(U ′′1) = range(U ′′2), where U ′′1 and U ′′2 are
defined by the following partitions:

Ū1 =:

[r+1

|α1|−r U ′1
r U ′′1

]
; Ū2 =:

[r+1

r U ′′2
|α2|−r U ′2

]
.

Let

U1 :=


r+1 |α2|−r n−|α|

|α1|−r U ′1 0 0
r U ′′1 0 0

|α2|−r 0 I 0
n−|α| 0 0 I

 ∈ Rn×(n−|α1|+r+1)

and

U2 :=


|α1|−r r+1 n−|α|

|α1|−r I 0 0
r 0 U ′′2 0

|α2|−r 0 U ′2 0
n−|α| 0 0 I

 ∈ Rn×(n−|α2|+r+1).

Let 0 6= z1 ∈ null(U ′′1), 0 6= z2 ∈ null(U ′′2), and let Ū ∈ R|α|×(r+2) be defined by either
of the two following expressions:

Ū :=

[r+1 1

|α1|−r U ′1(U ′′1)†U ′′2 U ′1z1

|α2| Ū2 0

]
; (4.18a)

Ū :=

[r+1 1

|α1| Ū1 0
|α2|−r U ′2(U ′′2)†U ′′1 U ′2z2

]
. (4.18b)

Let

U :=

[r+2 n−|α|

|α| Ū 0
n−|α| 0 I

]
∈ Rn×(n−|α|+r+2).

Then:

1. range(U) = range(U1) ∩ range(U2);

2. e ∈ range(Ū1) ∩ range(Ū2) implies e ∈ range(U).

81

Proof. Since U ′′i ∈ Rr×(r+1), rank(U ′′i) = r, and 0 6= zi ∈ null(U ′′i), we have that
null(U ′′i) = R {zi}, for i = 1, 2. First we let Ū be given by equation (4.18a). Suppose
x ∈ range(U1) ∩ range(U2). Then

x =


U ′1v1

U ′′1 v1

v2

v3

 =


w1

U ′′2w2

U ′2w2

w3

 , (4.19)

for some v =
[
v1; v2; v3

]
∈ Rn−|α1|+r+1 and w =

[
w1;w2;w3

]
∈ Rn−|α2|+r+1, parti-

tioned appropriately. Therefore, by Proposition 2.6, we have that

v1 ∈ (U ′′1)†U ′′2w2 + null(U ′′1),

so v1 = (U ′′1)†U ′′2w2 + µ1z1, for some µ1 ∈ R. Thus,

x =


U ′1(U ′′1)†U ′′2w2 + µ1U

′
1z1

U ′′2w2

U ′2w2

w3

 =

[
Ū 0
0 I

]w2

µ1

w3

 . (4.20)

Therefore, x ∈ range(U). Now suppose that x ∈ range(U). Then there exist
w2 ∈ Rr+1, µ1 ∈ R, and w3 ∈ Rn−|α| satisfying equation (4.20). Let

v1 := (U ′′1)†U ′′2w2 + µ1z1, w1 := U ′1v1,

v2 := U ′2w2,

v3 := w3.

Since range(U ′′1) = range(U ′′2) and z1 ∈ null(U ′′1), we have U ′′1 v1 = U ′′1 (U ′′1)†U ′′2w2 +
µ1U

′′
1 z1 = U ′′2w2. Therefore, equation (4.19) holds, so x ∈ range(U1) ∩ range(U2).

Thus,
range(U) = range(U1) ∩ range(U2)

when Ū is given by equation (4.18a). An similar argument gives the same result
when Ū is given by equation (4.18b). Finally we note that e ∈ range(Ū1)∩range(Ū2)
implies that

e ∈ range(U1) ∩ range(U2),

so we have e ∈ range(U).

4.8.2 Non-rigid intersection

We now give the main result of Section 4.8 which, under the assumption of rigid
intersection, provides the guarantee the assumptions of Lemma 4.9 are satisfied.

82

Theorem 4.10 (Non-Rigid Intersection Facial Reduction Theorem). Let D be an
n-by-n partial Euclidean distance matrix, let H be the corresponding 0–1 adjacency
matrix, and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let α1, α2 ⊆ 1:n such that |α1 ∩ α2| = r, and let α := α1 ∪ α2. For i = 1, 2, let

Fi :=
{
Y ∈ Sn+ ∩ SnC : H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi]

}
,

and let Ūi =∈ R|αi|×(r+1) with full column rank satisfy e ∈ range(Ūi) and

face
{
Y ∈ S |αi|

+ ∩ S |αi|
C : H[αi] ◦ K(Y) = H[αi] ◦D[αi]

}
E
(
ŪiSr+1

+ ŪT
i

)
∩ S |αi|

C .

Let Ū1 and Ū2 be partitioned as follows:

Ū1 =:

[r+1

|α1|−r U ′1
r U ′′1

]
; Ū2 =:

[r+1

r U ′′2
|α2|−r U ′2

]
.

If there exists Ȳ ∈ F1∩F2 such that embdim(D̄) = r−1, where D̄ := K(Ȳ [α1∩α2]),
then

1. rank(U ′′1) = rank(U ′′2) = r;

2. range(U ′′1) = range(U ′′2).

Proof. Let

U1 :=


r+1 |α2|−r n−|α|

|α1|−r U ′1 0 0
r U ′′1 0 0

|α2|−r 0 I 0
n−|α| 0 0 I

 ∈ Rn×(n−|α1|+r+1)

and

U2 :=


|α1|−r r+1 n−|α|

|α1|−r I 0 0
r 0 U ′′2 0

|α2|−r 0 U ′2 0
n−|α| 0 0 I

 ∈ Rn×(n−|α2|+r+1).

Since Ū1 and Ū2 have full column rank, from Theorem 4.4, we have

face(Fi) E
(
UiSn−|αi|+r+1

+ UT
i

)
∩ SnC , for i = 1, 2. (4.21)

Now, suppose there exists Ȳ ∈ F1 ∩ F2 such that embdim(D̄) = r − 1, where
D̄ := K(Ȳ [α1 ∩ α2]). Since

K†(D̄) = K†K(Ȳ [α1 ∩ α2]) = JȲ [α1 ∩ α2]J,

83

Theorem 2.37 implies that rank(JȲ [α1 ∩ α2]J) = r − 1. Now, since Ȳ ∈ F1, we
have, from equation (4.21), that range(Ȳ) ⊆ range(U1). Therefore,

range(Ȳ [α1 ∩ α2]) ⊆ range(U ′′1),

implying that
range(JȲ [α1 ∩ α2]J) ⊆ range(JU ′′1).

Since e ∈ range(U ′′1) we have from Lemma 4.7 that rank(JU ′′1) = rank(U ′′1) − 1.
Since U ′′1 ∈ Rr×(r+1), we have rank(U ′′1) ≤ r, so

r − 1 = rank(JȲ [α1 ∩ α2]J) ≤ rank(JU ′′1) ≤ r − 1.

Therefore, rank(JU ′′1) = r − 1 and

range(JȲ [α1 ∩ α2]J) = range(JU ′′1). (4.22)

Now, by Lemma 4.7, we have that

range(U ′′1) = range(JU ′′1)⊕ R {e}

and
rank(U ′′1) = rank(JU ′′1) + 1 = r.

Similarly, since Ȳ ∈ F2, we have that rank(U ′′2) = r and

range(JȲ [α1 ∩ α2]J) = range(JU ′′2). (4.23)

Thus, by equations (4.22) and (4.23), we have that range(JU ′′1) = range(JU ′′2)
Therefore,

range(U ′′1) = range(JU ′′1)⊕ R {e} = range(JU ′′2)⊕ R {e} = range(U ′′2).

4.9 Level k non-rigid intersection facial reduction

We now generalize the result from Section 4.8. We say that the subproblems given
by node subsets α1 and α2 have a level k non-rigid intersection if, for i = 1, 2, there
exists Ūi ∈ R|αi|×(r+1) with full column rank satisfying e ∈ range(Ūi) and

face
{
Y ∈ S |αi|

+ ∩ S |αi|
C : H[αi] ◦ K(Y) = H[αi] ◦D[αi]

}
E
(
ŪiSr+1

+ ŪT
i

)
∩ S |αi|

C ,

and there exists Ȳ ∈ Sn+ ∩ SnC satisfying

H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi], for i = 1, 2,

with embdim(K(Ȳ [α1 ∩ α2])) = r − k.

84

4.9.1 Level k non-rigid face intersection

We now give the level k version of Lemma 4.9. The proof is straightforward to
generalize from Lemma 4.9, so we have omitted it.

Lemma 4.11 (Level k Non-Rigid Face Intersection Lemma). Let α1, α2 ⊆ 1:n, such
that |α1∩α2| = r+1−k. Let α := α1∪α2. Let Ū1 ∈ R|α1|×(r+1) and Ū2 ∈ R|α2|×(r+1)

satisfy rank(U ′′1) = rank(U ′′2) = r + 1 − k and range(U ′′1) = range(U ′′2), where U ′′1
and U ′′2 are defined by the following partitions:

Ū1 =:

[r+1

|α1|−r−1+k U ′1
r+1−k U ′′1

]
; Ū2 =:

[r+1

r+1−k U ′′2
|α2|−r−1+k U ′2

]
.

Let

U1 :=


r+1 |α2|−r−1+k n−|α|

|α1|−r−1+k U ′1 0 0
r+1−k U ′′1 0 0

|α2|−r−1+k 0 I 0
n−|α| 0 0 I

 ∈ Rn×(n−|α1|+r+1)

and

U2 :=


|α1|−r−1+k r+1 n−|α|

|α1|−r−1+k I 0 0
r+1−k 0 U ′′2 0

|α2|−r−1+k 0 U ′2 0
n−|α| 0 0 I

 ∈ Rn×(n−|α2|+r+1).

For i = 1, 2, let Zi ∈ R(r+1−k)×k satisfy range(Zi) = null(U ′′i). Let Ū ∈ R|α|×(r+k+1)

be defined by either of the two following expressions:

Ū :=

[r+1 k

|α1|−r−1+k U ′1(U ′′1)†U ′′2 U ′1Z1

|α2| Ū2 0

]
; (4.24a)

Ū :=

[r+1 k

|α1| Ū1 0
|α2|−r−1+k U ′2(U ′′2)†U ′′1 U ′2Z2

]
. (4.24b)

Let

U :=

[r+k+1 n−|α|

|α| Ū 0
n−|α| 0 I

]
∈ Rn×(n−|α|+r+k+1).

Then:

1. range(U) = range(U1) ∩ range(U2);

2. e ∈ range(Ū1) ∩ range(Ū2) implies e ∈ range(U).

85

4.9.2 Level k non-rigid intersection

We now generalize Theorem 4.10. Again, it is straightforward to generalize the
proof, so the proof has been omitted.

Theorem 4.12 (Level k Non-Rigid Intersection Facial Reduction Theorem). Let
D be an n-by-n partial Euclidean distance matrix, let H be the corresponding 0–1
adjacency matrix, and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let α1, α2 ⊆ 1:n such that |α1 ∩ α2| = r+ 1− k, and let α := α1 ∪ α2. For i = 1, 2,
let

Fi :=
{
Y ∈ Sn+ ∩ SnC : H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi]

}
,

and let Ūi =∈ R|αi|×(r+1) with full column rank satisfy e ∈ range(Ūi) and

face
{
Y ∈ S |αi|

+ ∩ S |αi|
C : H[αi] ◦ K(Y) = H[αi] ◦D[αi]

}
E
(
ŪiSr+1

+ ŪT
i

)
∩ S |αi|

C .

Let Ū1 and Ū2 be partitioned as follows:

Ū1 =:

[r+1

|α1|−r−1+k U ′1
r+1−k U ′′1

]
; Ū2 =:

[r+1

r+1−k U ′′2
|α2|−r−1+k U ′2

]
.

If there exists Ȳ ∈ F1∩F2 such that embdim(D̄) = r−k, where D̄ := K(Ȳ [α1∩α2]),
then

1. rank(U ′′1) = rank(U ′′2) = r + 1− k;

2. range(U ′′1) = range(U ′′2).

4.10 Constraint reduction

We now present two theorems that show we can also reduce the number of con-
straints in our problem. First we show how to remove the centring constraint using
facial reduction. Then we show how we can easily complete a Euclidean distance
matrix using the corresponding facial representation using just a few distance con-
straints; this result then implies that we may discard many distance constraints for
each subproblem for which we have a facial representation of the proper dimension.

4.10.1 Centring constraint reduction

We can further reduce the size of the matrix variable required by one dimension if
we eliminate the centring constraint, Y ∈ SnC , using the following technique.

86

Theorem 4.13 (Centring Constraint Reduction Theorem). Let D be an n-by-n
partial Euclidean distance matrix, let H be the corresponding 0–1 adjacency matrix,
and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let U ∈ Rn×(t+1) satisfy

face
{
Y ∈ Sn+ : H ◦ K(Y) = H ◦D

}
E USt+1

+ UT .

Let V ∈ R(t+1)×t have full column rank and satisfy range(V) =
{
UT e

}⊥
. Then

face(F) E
(
USt+1

+ UT
)
∩ SnC = (UV)St+(UV)T .

Proof. First we note that F ⊆
(
USt+1

+ UT
)
∩ SnC . Thus,

face(F) E
(
USt+1

+ UT
)
∩ SnC .

Next we note that V TUT e = 0. Therefore,

(UV)St+(UV)T ⊆
(
USt+1

+ UT
)
∩ SnC .

Now suppose Y ∈
(
USt+1

+ UT
)
∩ SnC . Then Y = UZUT , for some Z ∈ St+1

+ , and

UZUT e = 0. Therefore,
∥∥Z1/2UT e

∥∥2
= eTUZUT e = 0, so eTUZ1/2 = 0. Thus,

range(Z1/2) ⊆ null(eTU) = range(UT e)⊥ = range(V),

so there exists some Φ ∈ Rt×(t+1) such that Z1/2 = V Φ. Therefore, Z = V ΦΦTV T ,
so Y ∈ (UV)St+(UV)T .

4.10.2 Euclidean distance matrix completion

We now show that our facial reduction technique not only reduces the size of the
semidefinite matrix variable we need, but it also reduces the number of constraints
we need. We begin with a result that shows that if we have determined a face
with low enough dimension, then most of the equality constraints may be dis-
carded. Moreover, with this low dimensional face and the few remaining distance
constraints, we can obtain the unique completion of the partial Euclidean distance
matrix.

Theorem 4.14 (Euclidean Distance Matrix Completion Theorem). Let D be an
n-by-n partial Euclidean distance matrix, let H be the corresponding 0–1 adjacency
matrix, and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let U ∈ Rn×(t+1) satisfy

face(F) E
(
USt+1

+ UT
)
∩ SnC = (UV)St+(UV)T ,

where V ∈ R(t+1)×t is full column rank and satisfies range(V) =
{
UT e

}⊥
. If Ȳ ∈ F

and there exists some clique β ⊆ 1:n such that embdim(D[β]) = t, then:

87

1. F =
{
Y ∈ (UV)St+(UV)T : K(Y [β]) = D[β]

}
=
{
Ȳ
}

;

2. Ȳ = (UV)Z̄(UV)T , where Z̄ ∈ St+ is the unique solution of the linear system

(JUβV)Z(JUβV)T = K†(D[β]), (4.25)

with Uβ := U [β, :] ∈ R|β|×(t+1);

3. D̄ := K(P̄ P̄ T) ∈ En is the unique completion of D, where

P̄ := UV Z̄1/2 ∈ Rn×t.

Proof. Clearly we have

F ⊆
{
Y ∈ (UV)St+(UV)T : K(Y [β]) = D[β]

}
.

Suppose Y = (UV)Z(UV)T , for some Z ∈ St+, and K(Y [β]) = D[β]. Then Y [β] =
(UβV)Z(UβV)T , so we have

K
(
(UβV)Z(UβV)T

)
= D[β],

implying that Z satisfies equation (4.25) since K†K is the orthogonal projection

onto S |β|C . Define M := JUβV ∈ R|β|×t. Then MZMT = K†(D[β]) implies that
rank(M) ≥ rank(K†(D[β])) = t. Therefore M has full column rank, implying that
equation (4.25) has a unique solution; this can be seen since MẐMT = 0 would
imply that ∥∥MẐ

∥∥2
=
〈
MẐ,MẐ

〉
=
〈
MẐMT , Ẑ

〉
= 0,

so MẐ = 0 and hence Ẑ = 0. Therefore, Y = Ȳ , so we have{
Y ∈ (UV)St+(UV)T : K(Y [β]) = D[β]

}
=
{
Ȳ
}
.

Let Z̄ be the unique solution of equation (4.25) and let P̄ := UV Z̄1/2. Then
Ȳ = P̄ P̄ T , so we have that H ◦ K(P̄ P̄ T) = H ◦ D. Thus, D̄ := K(P̄ P̄ T) is a
completion of the partial Euclidean distance matrix D. Suppose that D̂ ∈ En is
another completion of D. Then K†(D̂) ∈ F , so K†(D̂) = Ȳ , and thus D̂ = K(Ȳ) =
D̄. Therefore, D̄ is the unique completion of D.

Note that in this theorem, it is possible for |β| to be as small as t+ 1. Thus, we
may only require very few distance constraints to complete the partial Euclidean
distance matrix; moreover, when |β| is very small, solving system (4.25) is very
inexpensive. Surprisingly, when the conditions of Theorem 4.14 hold, we find that
we can explicitly solve for the unique feasible solution without using a semidefi-
nite optimization solver. This result is reminiscent of other results in semidefinite
optimization where the optimal solution can be obtained without the need of an
semidefinite optimization solver; see, for example, Vanderbei and Yang (1995),
Wolkowicz (1996), and Muramatsu (2005).

88

We now present the non-rigid version of Theorem 4.14. Here we show that when
we have a non-rigid intersection, there are at most two different completions that
are possible, each of which is easily computable by solving a simple linear system
and a solve a small generalized eigenvalue problem. We may then check which of
these two solutions is feasible; if exactly one of the two solutions is feasible, then we
have determined the unique Euclidean distance matrix completion for the partial
Euclidean distance matrix.

Theorem 4.15 (Non-Rigid Euclidean Distance Matrix Completion Theorem). Let
D be an n-by-n partial Euclidean distance matrix, let H be the corresponding 0–1
adjacency matrix, and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

Let α1, α2 ⊆ 1:n such that α1 ∪ α2 = 1:n and |α1 ∩ α2| = r. For i = 1, 2, let

Fi :=
{
Y ∈ Sn+ ∩ SnC : H[αi] ◦ K(Y [αi]) = H[αi] ◦D[αi]

}
,

F̄i :=
{
Y ∈ S |αi|

+ ∩ S |αi|
C : H[αi] ◦ K(Y) = H[αi] ◦D[αi]

}
,

and let Ūi =∈ R|αi|×(r+1) with full column rank satisfy e ∈ range(Ūi) and

face
(
F̄i
)

E
(
ŪiSr+1

+ ŪT
i

)
∩ S |αi|

C .

Let Ū ∈ Rn×(r+2) be given by one of the two expressions in equation (4.18), and let
U := Ū . Then

face(F) E
(
USr+2

+ UT
)
∩ SnC = (UV)Sr+1

+ (UV)T ,

where V ∈ R(r+2)×(r+1) is full column rank and satisfies range(V) =
{
UT e

}⊥
.

For i = 1, 2, let Uαi
:= U [αi, :] ∈ R|αi|×(r+2) and let Ji ∈ S |αi| be the orthogonal

projection onto {e}⊥ ⊆ R|αi|.

If Ȳ = (UV)Z̄(UV)T ∈ F1 ∩ F2 such that Z̄ ∈ Sr+1
++ and, for i = 1, 2, there

exists some Ȳi ∈ F̄i and some clique βi ⊆ αi such that embdim(D[βi]) = r, then:

1. F̄i =
{
Y ∈

(
ŪiSr+1

+ ŪT
i

)
∩ S |αi| : K(Y [βi]) = D[βi]

}
=
{
Ȳi
}

, for i = 1, 2;

2. JiUαi
V ∈ R|αi|×(r+1) and rank(JiUαi

V) = r, for i = 1, 2;

3. Z ∈ Sr+1 is a solution of the system of equations

(J1Uα1V)Z(J1Uα1V)T = Ȳ1

(J2Uα2V)Z(J2Uα2V)T = Ȳ2

(4.26)

if and only if
Z = Z̄ + τ∆Z, for some τ ∈ R,

where ∆Z := z1z
T
2 + z2z

T
1 , for some z1 ∈ null(J1Uα1V) and z2 ∈ null(J2Uα2V)

with ‖z1‖ = ‖z2‖ = 1;

89

4. there is at least one, and at most two, positive semidefinite solutions Z1 and
Z2 of system (4.26) having rank r;

5. {Y ∈ F : rank(Y) = r} ⊆ {Y1, Y2}, where

Y1 := (UV)Z1(UV)T ,

Y2 := (UV)Z2(UV)T .

Proof. Item 1 follows directly from Theorem 4.14. Since Ȳ ∈ F1, we have that
J1Ȳ [α1]J1 ∈ F̄1, so

(J1Uα1V)Z̄(J1Uα1V)T = Ȳ1.

Note that rank(Ȳ1) = r, so rank(J1Uα1V) ≥ r. However, since rank(Z̄) = r + 1, if
rank(J1Uα1V) = r+ 1, then rank(Ȳ1) = r+ 1 would give us a contradiction. There-
fore, rank(J1Uα1V) = r. Similarly, we have that rank(J2Uα2V) = r, concluding the
proof of Item 2.

Item 3 then follows from the facts that Z̄ is a particular solution of system 4.26,
and that dim(null(JiUαi

V)) = 1, for i = 1, 2.

Item 4 follows from the fact that the line
{
Z̄ + τ∆Z : τ ∈ R

}
intersects the in-

terior of the cone Sr+1
+ , but cannot extend infinitely far in both directions within

Sr+1
+ , since Sr+1

+ is a pointed cone. The one or two points where the line inter-
sects the boundary of Sr+1

+ can be computed by solving the generalized eigenvalue
problem −∆Zv = τZ̄v.

To prove Item 5, we let Y ∈ F such that rank(Y) = r. Then Y = (UV)Z(UV)T ,
for some Z ∈ Sr+1

+ . Since Y ∈ F1 ∩ F2, we have that Z must satisfy system 4.26.
If rank(Y) = r, then

r = rank(Y) ≤ rank(Z) ≤ r + 1.

We claim that rank(Z) = r. Suppose, for the sake of contradiction, that rank(Z) =
r + 1. Note that since rank(Ūi) = r + 1, for i = 1, 2, we must have that rank(U) ≥
r+1, since U = Ū from equation (4.18). Moreover, rank(V) = r+1. Therefore, the
matrix UV has full column rank. Thus, Z � 0 implies that range(Y) = range(UV),
so rank(Y) = r+ 1, a contradiction. Therefore, rank(Z) = r, so Z ∈ {Z1, Z2}, and
we conclude that Y ∈ {Y1, Y2}.

4.10.3 Distance constraint reduction

We now extend this result to show that whenever we have determined a face with
a small enough dimension for a subgraph of the partial Euclidean distance matrix,
then we need only keep the distance constraints coming from a clique having the
correct embedding dimension and contained in the subgraph.

Theorem 4.16 (Distance Constraint Reduction Theorem). Let D be an n-by-n
partial Euclidean distance matrix, let H be the corresponding 0–1 adjacency matrix,
and let

F :=
{
Y ∈ Sn+ ∩ SnC : H ◦ K(Y) = H ◦D

}
.

90

Let α ⊆ 1:n be an arbitrary subset,

Fα :=
{
Y ∈ Sn+ ∩ SnC : H[α] ◦ K(Y [α]) = H[α] ◦D[α]

}
,

and
F̄α :=

{
Y ∈ S |α|+ ∩ S

|α|
C : H[α] ◦ K(Y) = H[α] ◦D[α]

}
.

Assume, without loss of generality, that α = 1:k. Let Ū ∈ R|α|×(t+1) with full column
rank satisfy e ∈ range(Ū) and

face(F̄α) E
(
ŪSt+1

+ ŪT
)
∩ S |α|C ,

and let

U :=

[t+1 n−|α|

|α| Ū 0
n−|α| 0 I

]
∈ Rn×(n−|α|+t+1).

If Ȳ ∈ F̄α and there exists some clique β ⊆ α such that embdim(D[β]) = t, then:

1. F̄α =
{
Y ∈

(
ŪSt+1

+ ŪT
)
∩ S |α|C : K(Y [β]) = D[β]

}
=
{
Ȳ
}

;

2. Fα =
{
Y ∈

(
USn−|α|+t+1

+ UT
)
∩ SnC : K(Y [β]) = D[β]

}
.

Proof. Suppose that Ȳ ∈ F̄α and there exists some clique β ⊆ α such that
embdim(D[β]) = t. Item 1 then follows directly from Theorem 4.14. Since Ū
has full column rank, from Theorem 4.4, we have

face(Fα) E
(
USn−|α|+t+1

+ UT
)
∩ SnC ,

implying that

Fα ⊆
{
Y ∈

(
USn−|α|+t+1

+ UT
)
∩ SnC : K(Y [β]) = D[β]

}
.

Conversely, let Y = UZUT , for some Z ∈ Sn−|α|+t+1
+ , such that Y ∈ SnC and

K(Y [β]) = D[β]. Then

Y [α] = ŪΣŪT , for some Σ ∈ St+1
+ .

We now show that Y [α] projected onto the centred matrices belongs to F̄α. Let
X := JY [α]J . To show that X ∈ F̄α, we first note that K(X) = K(Y [α]), so we
have K(X[β]) = K(Y [β]) = D[β]. We will now show that range(X) ⊆ range(Ū).
Observe that X = JŪΣŪTJ , and that

JŪ =

(
I − 1

|α|
eeT
)
Ū = Ū − 1

|α|
e(eT Ū).

91

Since e ∈ range(Ū), we have that range(X) ⊆ range(JŪ) ⊆ range(Ū). Therefore,

X ∈
(
ŪSt+1

+ ŪT
)
∩ S |α|C . Thus, X = JY [α]J ∈ F̄α, so JY [α]J = Ȳ and K(Y [α]) =

K(Ȳ). Moreover, since Ȳ ∈ F̄α,

H[α] ◦ K(Ȳ) = H[α] ◦D[α],

so we also have
H[α] ◦ K(Y [α]) = H[α] ◦D[α].

Since Y ∈ Sn+ ∩ SnC , we conclude that Y ∈ Fα. Therefore,

Fα =
{
Y ∈ (UV)Sn−|α|+t+ (UV)T : K(Y [β]) = D[β]

}
.

4.11 A semidefinite facial reduction algorithm for

Euclidean distance matrix completion

We give a formal description of our semidefinite facial reduction algorithm for the
Euclidean distance matrix completion problem in Algorithm 1. We would like to
give a note here about our terminology. Suppose Ci and Cj are cliques in the
graph. It may not be the case that Ci ∪ Cj is a clique in the graph. However, by
our method for combining cliques, we can always complete the missing distances in
Ci∪Cj. Therefore, after computing the face for Ci∪Cj with the proper dimension,
we will refer to Ci ∪Cj as a clique; although it is not a clique in the original graph,
it is a clique in the graph created by adding all the missing edges in the induced
graph of Ci ∪ Cj. Because of our focus on cliques in the graph, we call our facial
reduction algorithm EDMSDPclique.

The output of Algorithm 1 is a family of cliques {Ci}i∈C and matrices
{
Ūi
}
i∈C

such that

face
{
Y ∈ S |Ci|

+ ∩ S |Ci|
C : H[Ci] ◦ K(Y [Ci]) = H[Ci] ◦D[Ci]

}
E ŪiSr+1

+ ŪT
i .

If the output is a single clique containing all the nodes in the graph, then we can use
Theorem 4.14 to compute a completion of the partial Euclidean distance matrix.
Otherwise, if not all the nodes are contained in a single clique, then the facial
information can be used together with a semidefinite optimization solver, or can be
used to just simply complete part of the partial Euclidean distance matrix.

4.12 Point representation

We have seen in Theorem 4.14 and Theorem 4.16 that we can easily obtain a point
representation giving us the unique Euclidean distance matrix completion for a sub-
graph from the facial representation of that subgraph, provided the face has a small

92

Algorithm 1: EDMSDPclique – a facial reduction algorithm

input : Partial n× n Euclidean distance matrix D in Rr with
corresponding 0–1 adjacency matrix H;

output: A family of cliques {Ci}i∈C and matrices
{
Ūi
}
i∈C such that

face
{
Y ∈ S |Ci|

+ ∩ S |Ci|
C : H[Ci] ◦ K(Y [Ci]) = H[Ci] ◦D[Ci]

}
E ŪiSr+1

+ ŪT
i ;

1 C := ∅; /* index set for a family of cliques */

2 for i = 1 to n do
3 Let Ci be a clique in the graph of D containing node i;
4 if embdim(D[Ci]) = r then
5 Compute Ūi ∈ R|Ci|×(r+1) to represent the face for clique Ci;

/* see Theorem 4.1 */

6 C := C ∪ {i};
7 end

8 end

9 repeat
10 if |Ci ∩ Cj| ≥ r + 1, for some i, j ∈ C then
11 RigidCliqueUnion(Ci,Cj); /* see Algorithm 2 */

12 else if |Ci ∩N (j)| ≥ r + 1, for some i ∈ C and node j then
13 RigidNodeAbsorption(Ci,j); /* see Algorithm 3 */

14 else if |Ci ∩ Cj| = r, for some i, j ∈ C then
15 NonRigidCliqueUnion(Ci,Cj); /* see Algorithm 4 */

16 else if |Ci ∩N (j)| = r, for some i ∈ C and node j then
17 NonRigidNodeAbsorption(Ci,j); /* see Algorithm 5 */

18 end

19 until not possible to decrease |C| or increase |Ci| for some i ∈ C;
20 return {Ci}i∈C and

{
Ūi
}
i∈C;

Algorithm 2: RigidCliqueUnion

input : cliques Ci and Cj such that |Ci ∩ Cj| ≥ r + 1;

1 Load Ūi ∈ R|Ci|×(r+1) and Ūj ∈ R|Cj |×(r+1) representing the faces
corresponding to Ci and Cj, respectively;

2 Compute Ū ∈ R|Ci∪Cj |×(r+1) using one of the two formulas in equation (4.12),
where Ū1 := Ūi and Ū2 := Ūj;

3 Update Ci := Ci ∪ Cj;
4 Update Ūi := Ū ;
5 Update C := C \ {j};

93

Algorithm 3: RigidNodeAbsorption

input : clique Ci and node j such that |Ci ∩N (j)| ≥ r + 1;

1 Load Ūi ∈ R|Ci|×(r+1) representing the face corresponding to Ci;
2 if Ci ∩N (j) is not a clique in the graph then
3 Use Ūi to compute a point representation Pi ∈ R|Ci|×r of Ci;

/* see Theorem 4.14 */

4 Use Pi to compute the distances between the nodes in Ci ∩N (j);

5 end
6 Use the distances between the nodes in (Ci ∩N (j)) ∪ {j} to compute the

matrix Ūj ∈ R(|Ci∩N (j)|+1)×(r+1) representing the face corresponding to
(Ci ∩N (j)) ∪ {j}; /* see Theorem 4.1 */

7 Compute Ū ∈ R(|Ci|+1)×(r+1) using one of the two formulas in equation (4.12),
where Ū1 := Ūi and Ū2 := Ūj;

8 Update Ci := Ci ∪ {j};
9 Update Ūi := Ū ;

Algorithm 4: NonRigidCliqueUnion

input : cliques Ci and Cj such that |Ci ∩ Cj| = r;

1 Load Ūi ∈ R|Ci|×(r+1) and Ūj ∈ R|Cj |×(r+1) representing the faces
corresponding to Ci and Cj, respectively;

2 Using Ūi and Ūj, find the two point representations of Ci ∪ Cj;
/* see Theorem 4.15 */

3 if exactly one of these two point representations is feasible then
4 Use the feasible point representation to compute Ū ∈ R|Ci∪Cj |×(r+1)

representing the face corresponding to Ci ∪ Cj; /* see Theorem 4.1 */

5 Update Ci := Ci ∪ Cj;
6 Update Ūi := Ū ;
7 Update C := C \ {j};
8 end

94

Algorithm 5: NonRigidNodeAbsorption

input : cliques Ci and node j such that |Ci ∩N (j)| = r;

1 Load Ūi ∈ R|Ci|×(r+1) representing the face corresponding to Ci;
2 if Ci ∩N (j) not a clique in the graph then
3 Use Ūi to compute a point representation Pi ∈ R|Ci|×r of Ci;

/* see Theorem 4.14 */

4 Use Pi to compute the distances between the nodes in Ci ∩N (j);

5 end
6 Use the distances between the sensors in (Ci ∩N (j)) ∪ {j} to compute the

matrix Ūj ∈ R(|Ci∩N (j)|+1)×(r+1) representing the face corresponding to
(Ci ∩N (j)) ∪ {j}; /* see Theorem 4.1 */

7 Using Ūi and Ūj, find the two point representations of Ci ∪ {j};
/* see Theorem 4.15 */

8 if exactly one of these two point representations is feasible then
9 Use the feasible point representation to compute Ū ∈ R|Ci∪Cj |×(r+1)

representing the face corresponding to Ci ∪ {j}; /* see Theorem 4.1 */

10 Update Ci := Ci ∪ {j};
11 Update Ūi := Ū ;

12 end

enough dimension. On the other hand, if we have determined a point representa-
tion for a subgraph that gives us the unique completion of its Euclidean distance
matrix, then we can treat that subgraph as a clique, and we may compute its facial
representation using Theorem 4.1. Indeed, we may even choose UC := PC in The-
orem 4.1, where PC ∈ R|C|×t satisfies K(PCP

T
C) = D[C], and t = embdim(D[C]).

Note that in this case, we must have
[
PC e

]
full column rank, so PC necessarily

has full column rank. Moreover, we may even chose PC centred, so that P T
C e = 0.

Thus, when we can verify that our subgraph has a unique Euclidean distance
matrix completion, we have that facial representations and point representations
are interchangeable. This idea gives rise to an algorithm that works with explicit
point representations instead of the implicit facial representations we have been
discussing thus far. However, before we continue, we should stress that the fa-
cial representations give us more flexibility and have a wider scope of application
over the point representation approach. Nevertheless, as we will see, the point
representation also carries an advantage over the facial representation approach.

One more point we should make is that these two approaches are somewhat dual
to each other. On the one hand, the goal of the facial representation approach is to
reduce the dimension of the face by intersecting pairs of faces; on the other hand,
the goal of the point representation approach is to increase the size of the set of
points by rotating two sets of points together to align their overlapping points, and
then taking the union of the two sets. We will see now the relationship between
intersecting subspaces and aligning points by an orthogonal transformation.

95

4.12.1 Point rotation and subspace intersection

We now provide more insight into the connection between the facial representation
and the point representation. In the following proposition we see the similarity
between the point rotation approach and the previous approach of subspace inter-
section in Lemma 4.6.

Proposition 4.17 (Point Rotation). Let α1, α2 ⊆ 1:n, α := α1 ∪ α2, and k :=
|α1 ∩ α2|. Let P̄1 ∈ R|α1|×r and P̄2 ∈ R|α2|×r satisfy P ′′T1 e = P ′′T2 e = 0, where P1

and P2 are partitioned as follows:

P̄1 =:

[r

|α1|−k P ′1
k P ′′1

]
; P̄2 =:

[r

k P ′′2
|α2|−k P ′2

]
.

Let P̄ ∈ R|α|×r be defined by either of the two following expressions:

P̄ :=

[r

|α1|−k P ′1(P ′′1)†P ′′2
|α2| P̄2

]
; (4.27a)

P̄ :=

[r

|α1| P̄1

|α2|−k P ′2(P ′′2)†P ′′1

]
. (4.27b)

Let Q1 := (P ′′1)†P ′′2 ∈ Rr×r and Q2 := (P ′′2)†P ′′1 ∈ Rr×r.

If
[
P ′′1 e

]
and

[
P ′′2 e

]
have full column rank and P ′′1 and P ′′2 both determine

the same Euclidean distance matrix, then

1. |α1 ∩ α2| ≥ r + 1;

2. P ′′1 P
′′T
1 = P ′′2 P

′′T
2 and range(P ′′1) = range(P ′′2);

3. Q1 and Q2 are othogonal;

4. P ′′1Q1 = P ′′2 and P ′′2Q2 = P ′′1 .

Proof. Since
[
P ′′1 e

]
and

[
P ′′2 e

]
have full column rank, we have |α1 ∩ α2| ≥

r + 1, and both P ′′1 and P ′′2 have full column rank. Since P ′′1 and P ′′2 determine
the same Euclidean distance matrix, we have that K(P ′′1 P

′′T
1) = K(P ′′2 P

′′T
2), so

K†K(P ′′1 P
′′T
1) = K†K(P ′′2 P

′′T
2). However, since K†K projects onto the centred ma-

trices, and since P ′′T1 e = P ′′T2 e = 0, we have that P ′′1 P
′′T
1 = P ′′2 P

′′T
2 . Now, since P ′′1

has full column rank, we have that range(P ′′T1) = Rr. Thus, if y = P ′′1 x ∈ range(P ′′1),
then there exists some z ∈ Rk such that x = P ′′T1 z, so we have

y = P ′′1 P
′′T
1 z = P ′′2 P

′′T
2 z ∈ range(P ′′2),

96

so range(P ′′1) ⊆ range(P ′′2). Similarly, we have range(P ′′2) ⊆ range(P ′′1). Next, we
have

Q1Q
T
1 = (P ′′1)†P ′′2 P

′′T
2 (P ′′1)†T

= (P ′′1)†P ′′1 P
′′T
1 (P ′′1)†T

= I,

since P ′′1 having full column rank implies that (P ′′1)†P ′′1 = I. Thus, Q1 is orthogonal.
Similarly, we also have that Q2 is orthogonal. Finally, we see that

P ′′1Q1 = P ′′1 (P ′′1)†P ′′2 = P ′′2 ,

since P ′′1 (P ′′1)† is the projection onto range(P ′′1) = range(P ′′2); similarly, we have
P ′′2Q2 = P ′′1 .

4.13 A point representation algorithm for Eu-

clidean distance matrix completion

The main differences between our point representation algorithm and our facial rep-
resentation algorithm for Euclidean distance matrix completion is how we perform
two operations. First, instead of choosing any UC with full column rank such that
range(UC) = range(K†(D[C])) in Theorem 4.1, we compute a point representation
PC of D[C] as follows:

• compute the compact eigenvalue decomposition K†(D[C]) = UCΛCU
T
C , where

UC ∈ R|C|×r has orthonormal columns and ΛC ∈ Sr++ is diagonal;

• let PC := UCΛ
1/2
C .

The second difference is that we solve the Procrustes problem (3.3) when performing
any of the clique union or node absorption steps. In the end, we return a family of
cliques {Ci}i∈C and matrices

{
P̄i
}
i∈C such that

H[Ci] ◦ K(PiP
T
i) = H[Ci] ◦D[Ci], for all i ∈ C.

This family of point representations can then be used to compute a face containing
the feasible set of the semidefinite relaxation of the Euclidean distance matrix
completion problem, which can then be used to reduce the size of the problem
before solving it using a semidefinite optimization solver.

97

Chapter 5

Numerical Results

We have conducted our numerical experiments based on the major applications
of wireless sensor network localization and molecular conformation. The primary
difference between these two applications is that the sensor network localization
problem includes anchors, whereas the molecular conformation problem is anchor-
free. In addition, the sensor network localization tests were randomly generated
and primarily in two dimensions, while the molecular conformation tests were based
on real three dimensional molecular data.

5.1 Sensor network localization

We begin with discussing the numerical tests we conducted on the sensor network
localization problem.

5.1.1 Random problems

We follow Biswas and Ye (2004), Biswas et al. (2006), Tseng (2007), Wang et al.
(2008), Pong and Tseng (2010), Kim et al. (2009a,b) by generating our random
problems using the following procedure. Let R > 0 be a chosen radio range, and
let G = (N,E) be the graph with N = {1, . . . , n} and

E = {ij : i 6= j, ‖xi − xj‖2 ≤ R} ,

where {x1, . . . , xn} ⊆ [0, 1]r are distributed independently and uniformly at random.

This procedure will produce sensor network localization instances with the fol-
lowing properties. For R > 0 small enough, the expected value of the degree of any
node i ∈ N is

E[deg(i)] = (n− 1)vol(RBr) = (n− 1)Rrvol(Br),

98

where Br is the unit ball in Rr. The expected value of the average degree of G is

E

[
1

n

n∑
i=1

deg(i)

]
=

1

n

n∑
i=1

E[deg(i)]

= (n− 1)vol(Br)Rr,

and the expected number of edges in the graph is

E[|E|] = E

[
1

2

n∑
i=1

deg(i)

]

=
1

2

n∑
i=1

E[deg(i)]

=
n(n− 1)

2
vol(Br)Rr.

Therefore, the expected density of the graph is

E

[
|E|(
n
2

)] =
E[|E|]
n(n−1)

2

= vol(Br)Rr.

5.1.2 The SNLSDPclique facial reduction algorithm

We now provide an explicit description of our SNLSDPclique facial reduction algo-
rithm, in Algorithm 6. Although this algorithm is very similar to the EDMSDPclique
Algorithm 1, for clarity we have included all the details together rather than simply
point out the differences. We have implemented the SNLSDPclique algorithm in
Matlab and have made our source code available on our website, released under
a GNU General Public License.

5.1.3 Numerical tests

Our tests are on problems with sensors and anchors randomly placed in the region
[0, 1]r by means of a uniform random distribution. We vary the number of sensors
from 2000 to 10000 in steps of 2000, and the radio range R from .07 to .04 in
steps of −.01. We also include tests on very large problems with 20000 to 100000
sensors. Our tests were done using the 32-bit version of Matlab R2009b on a
laptop running Windows XP, with a 2.16 GHz Intel Core 2 Duo processor and
with 2 GB of RAM. The source code used for running these tests is SNLSDPclique,
version 0.2, and is available from the author’s website. The code used for running
the point representation method has not yet been made available publicly.

Tables 5.1, 5.3, and 5.5 contain the results of our tests on noiseless problems.
These tables contain the following information.

99

Algorithm 6: SNLSDPclique – a facial reduction algorithm

input : Partial n× n Euclidean distance matrix D and anchors A ∈ Rm×r;

output: X ∈ R|Ci|×r, where Ci is the largest final subset that contains the
anchors;

1 Let C := {1, . . . , n+ 1};
2 Let {Ci}i∈C be a family of cliques satisfying i ∈ Ci for all i = 1, . . . , n;

/* For example, Ci := {i}, for i = 1, . . . , n. */

3 Let Cn+1 := {n−m+ 1, . . . , n}; /* Cn+1 is the clique of anchors */

4 GrowCliques ; /* see Algorithm 7 */

5 ComputeFaces ; /* see Algorithm 8 */

6 repeat
7 if |Ci ∩ Cj| ≥ r + 1, for some i, j ∈ C then
8 RigidCliqueUnion(Ci,Cj); /* see Algorithm 9 */

9 else if |Ci ∩N (j)| ≥ r + 1, for some i ∈ C and node j then
10 RigidNodeAbsorption(Ci,j); /* see Algorithm 10 */

11 else if |Ci ∩ Cj| = r, for some i, j ∈ C then
12 NonRigidCliqueUnion(Ci,Cj); /* see Algorithm 11 */

13 else if |Ci ∩N (j)| = r, for some i ∈ C and node j then
14 NonRigidNodeAbsorption(Ci,j); /* see Algorithm 12 */

15 end

16 until not possible to decrease |C| or increase |Ci| for some i ∈ C;
17 Let Ci be the largest subset that contains the anchors;
18 if Ci contains some sensors then
19 Compute a point representation P ∈ R|Ci|×r for Ci;

/* see Theorem 4.14 */

20 Compute positions of sensors X ∈ R(|Ci|−m)×r in Ci by rotating P to
align with anchor positions A ∈ Rm×r /* see Theorem 3.1 */

21 return X;

22 else
23 return X := ∅;
24 end

Algorithm 7: GrowCliques

Choose MaxCliqueSize > r + 1;
/* For example, MaxCliqueSize := 3(r + 1) */

1 for i ∈ C do
2 while (|Ci| < MaxCliqueSize) and (∃ a node j adjacent to all nodes

in Ci) do
3 Ci := Ci ∪ {j};
4 end

5 end

100

Algorithm 8: ComputeFaces

for i ∈ C do
Compute Ūi ∈ R|Ci|×(r+1) to represent the face for clique Ci;

/* see Theorem 4.1 */

/* Alternatively, wait to compute Ūi when first needed. This

can be more efficient since Ūi may not be needed for every

clique. */

end

Algorithm 9: RigidCliqueUnion

input : cliques Ci and Cj such that |Ci ∩ Cj| ≥ r + 1;

1 Load Ūi ∈ R|Ci|×(r+1) and Ūj ∈ R|Cj |×(r+1) representing the faces
corresponding to Ci and Cj, respectively;

2 Compute Ū ∈ R|Ci∪Cj |×(r+1) using one of the two formulas in equation (4.12),
where Ū1 := Ūi and Ū2 := Ūj;

3 Update Ci := Ci ∪ Cj;
4 Update Ūi := Ū ;
5 Update C := C \ {j};

Algorithm 10: RigidNodeAbsorption

input : clique Ci and node j such that |Ci ∩N (j)| ≥ r + 1;

1 Load Ūi ∈ R|Ci|×(r+1) representing the face corresponding to Ci;
2 if Ci ∩N (j) is not a clique in the graph then
3 Use Ūi to compute a point representation Pi ∈ R|Ci|×r of Ci;

/* see Theorem 4.14 */

4 Use Pi to compute the distances between the sensors in Ci ∩N (j);

5 end
6 Use the distances between the sensors in (Ci ∩N (j)) ∪ {j} to compute the

matrix Ūj ∈ R(|Ci∩N (j)|+1)×(r+1) representing the face corresponding to
(Ci ∩N (j)) ∪ {j}; /* see Theorem 4.1 */

7 Compute Ū ∈ R(|Ci|+1)×(r+1) using one of the two formulas in equation (4.12),
where Ū1 := Ūi and Ū2 := Ūj;

8 Update Ci := Ci ∪ {j};
9 Update Ūi := Ū ;

101

Algorithm 11: NonRigidCliqueUnion

input : cliques Ci and Cj such that |Ci ∩ Cj| = r;

1 Load Ūi ∈ R|Ci|×(r+1) and Ūj ∈ R|Cj |×(r+1) representing the faces
corresponding to Ci and Cj, respectively;

2 Using Ūi and Ūj, find the two point representations of Ci ∪ Cj;
/* see Theorem 4.15 */

3 if exactly one of these two point representations is feasible then
4 Use the feasible point representation to compute Ū ∈ R|Ci∪Cj |×(r+1)

representing the face corresponding to Ci ∪ Cj; /* see Theorem 4.1 */

5 Update Ci := Ci ∪ Cj;
6 Update Ūi := Ū ;
7 Update C := C \ {j};
8 end

Algorithm 12: NonRigidNodeAbsorption

input : cliques Ci and node j such that |Ci ∩N (j)| = r;

1 Load Ūi ∈ R|Ci|×(r+1) representing the face corresponding to Ci;
2 if Ci ∩N (j) not a clique in the graph then
3 Use Ūi to compute a point representation Pi ∈ R|Ci|×r of Ci;

/* see Theorem 4.14 */

4 Use Pi to compute the distances between the sensors in Ci ∩N (j);

5 end
6 Use the distances between the sensors in (Ci ∩N (j)) ∪ {j} to compute the

matrix Ūj ∈ R(|Ci∩N (j)|+1)×(r+1) representing the face corresponding to
(Ci ∩N (j)) ∪ {j}; /* see Theorem 4.1 */

7 Using Ūi and Ūj, find the two point representations of Ci ∪ {j};
/* see Theorem 4.15 */

8 if exactly one of these two point representations is feasible then
9 Use the feasible point representation to compute Ū ∈ R|Ci∪Cj |×(r+1)

representing the face corresponding to Ci ∪ {j}; /* see Theorem 4.1 */

10 Update Ci := Ci ∪ {j};
11 Update Ūi := Ū ;

12 end

102

1. # sensors, r, # anchors, and R:

We use m = (#anchors), n = (#sensors) + (#anchors), and r to generate
ten random instances of p1, . . . , pn ∈ Rr; the last m random points are taken
to be the anchors. For each of these ten instances, and for each value of
the radio range R > 0, we generate the the n× n partial Euclidean distance
matrix Dp according to

(Dp)ij =

{
‖pi − pj‖2, if ‖pi − pj‖ < R, or both pi and pj are anchors

unspecified, otherwise.

2. # Successful Instances:

An instance was called successful if at least some, if not all, of the sensors could
be positioned. If, by the end of the algorithm, the largest clique containing
the anchors did not contain any sensors, then none of the sensor positions
could be determined, making such an instance unsuccessful.

3. Average Degree:

We have found that the average degree of the nodes of a graph is a good
indicator of the percentage of sensors that can be positioned. In the results
reported, we give the average of the average degree over all ten instances.

4. # Sensors Positioned:

We give the average number of sensors that could be positioned over all ten
instances. Note that below we indicate that the error measurements are
computed only over the sensors that could be positioned.

5. CPU Time:

Indicates the average running time of SNLSDPclique over all ten instances.
This time does not include the time to generate the random problems, but it
does include all aspects of the Algorithm 6, including the time for GrowCliques
and ComputeFaces at the beginning of the algorithm.

6. Max Error:

The maximum distance between the positions of the sensors found and the
true positions of those sensors. This is defined as

Max Error := max
i positioned

‖pi − ptrue
i ‖2.

7. RMSD:

The root mean square deviation of the positions of the sensors found and the
true positions of those sensors. This is defined as

RMSD :=

(
1

positioned

∑
i positioned

‖pi − ptrue
i ‖2

2

) 1
2

.

103

Table 5.1: Results of Algorithm 6 on noiseless problems, using step
RigidCliqueUnion. The values for Average Degree, # Sensors Positioned, and
CPU Time are averaged over ten random instances. The values for Max Error and
RMSD values are averaged over the successful instances.

Succ. Avg. # Sensors CPU Max
sensors r anchors R Instances Deg. Positioned Time Error RMSD
2000 2 4 .07 9/10 14.5 1632.3 1 s 6e-13 2e-13
2000 2 4 .06 5/10 10.7 720.0 1 s 1e-12 4e-13
2000 2 4 .05 0/10 7.5 0.0 1 s - -
2000 2 4 .04 0/10 4.9 0.0 1 s - -
4000 2 4 .07 10/10 29.0 3904.1 2 s 2e-13 6e-14
4000 2 4 .06 10/10 21.5 3922.3 2 s 6e-13 2e-13
4000 2 4 .05 10/10 15.1 3836.2 2 s 4e-13 2e-13
4000 2 4 .04 1/10 9.7 237.8 2 s 1e-13 4e-14
6000 2 4 .07 10/10 43.5 5966.9 4 s 3e-13 8e-14
6000 2 4 .06 10/10 32.3 5964.4 4 s 2e-13 7e-14
6000 2 4 .05 10/10 22.6 5894.8 3 s 3e-13 1e-13
6000 2 4 .04 10/10 14.6 5776.9 3 s 7e-13 2e-13
8000 2 4 .07 10/10 58.1 7969.8 6 s 3e-13 8e-14
8000 2 4 .06 10/10 43.0 7980.9 6 s 2e-13 8e-14
8000 2 4 .05 10/10 30.1 7953.1 5 s 6e-13 2e-13
8000 2 4 .04 10/10 19.5 7891.0 5 s 6e-13 2e-13
10000 2 4 .07 10/10 72.6 9974.6 9 s 3e-13 7e-14
10000 2 4 .06 10/10 53.8 9969.1 8 s 9e-13 1e-13
10000 2 4 .05 10/10 37.7 9925.4 7 s 5e-13 2e-13
10000 2 4 .04 10/10 24.3 9907.2 7 s 3e-13 1e-13
20000 2 4 .030 10/10 27.6 19853.3 17 s 7e-13 2e-13
40000 2 4 .020 10/10 24.7 39725.2 50 s 2e-12 6e-13
60000 2 4 .015 10/10 21.0 59461.1 1 m 52 s 1e-11 8e-13
80000 2 4 .013 10/10 21.0 79314.1 3 m 24 s 4e-12 1e-12
100000 2 4 .011 10/10 18.8 99174.4 5 m 42 s 2e-10 9e-11

We note that for each set of ten random instances, the Max Error and RMSD values
reported are the average Max Error and average RMSD values over the successful
instances only; this is due to the fact that an unsuccessful instance will have no
computed sensor positions to compare with the true sensor positions.

We have three sets of tests on noiseless problems.

1. In Table 5.1 we report the results of using only the RigidCliqueUnion step
to solve our random problems. Table 5.2 reports the results of the same tests,
but using the point representation method, for which we observe an improved
accuracy.

2. In Table 5.3 we report the results of increasing the level of our algorithm
to use both the RigidCliqueUnion and RigidNodeAbsorb steps to solve the
random problems. We see that the number of sensors localized has increased

104

Table 5.2: Results of the point representation method on noiseless problems, using
step RigidCliqueUnion. The values for Average Degree, # Sensors Positioned,
and CPU Time are averaged over ten random instances. The values for Max Error
and RMSD values are averaged over the successful instances.

Succ. Avg. # Sensors CPU Max
sensors r anchors R Instances Deg. Positioned Time Error RMSD
2000 2 4 .07 9/10 14.5 1632.3 1 s 1e-15 5e-16
2000 2 4 .06 5/10 10.7 720.0 1 s 9e-16 3e-16
2000 2 4 .05 0/10 7.5 0.0 1 s - -
2000 2 4 .04 0/10 4.9 0.0 1 s - -
4000 2 4 .07 10/10 29.0 3904.1 2 s 2e-15 5e-16
4000 2 4 .06 10/10 21.5 3922.3 2 s 1e-15 5e-16
4000 2 4 .05 10/10 15.1 3836.2 2 s 1e-15 5e-16
4000 2 4 .04 1/10 9.7 237.8 2 s 1e-15 6e-16
6000 2 4 .07 10/10 43.5 5966.9 3 s 1e-15 4e-16
6000 2 4 .06 10/10 32.3 5964.4 3 s 1e-15 5e-16
6000 2 4 .05 10/10 22.6 5894.8 3 s 2e-15 8e-16
6000 2 4 .04 10/10 14.6 5776.9 3 s 2e-15 6e-16
8000 2 4 .07 10/10 58.1 7969.8 5 s 1e-15 5e-16
8000 2 4 .06 10/10 43.0 7980.9 5 s 2e-15 5e-16
8000 2 4 .05 10/10 30.1 7953.1 4 s 1e-15 5e-16
8000 2 4 .04 10/10 19.5 7891.0 4 s 1e-15 5e-16
10000 2 4 .07 10/10 72.6 9974.6 7 s 3e-15 9e-16
10000 2 4 .06 10/10 53.8 9969.1 6 s 2e-15 7e-16
10000 2 4 .05 10/10 37.7 9925.4 6 s 2e-15 6e-16
10000 2 4 .04 10/10 24.3 9907.2 5 s 3e-15 1e-15
20000 2 4 .030 10/10 27.6 19853.3 14 s 2e-15 8e-16
40000 2 4 .020 10/10 24.7 39725.2 41 s 3e-15 9e-16
60000 2 4 .015 10/10 21.0 59461.1 1 m 20 s 3e-15 9e-16
80000 2 4 .013 10/10 21.0 79314.1 2 m 34 s 3e-15 9e-16
100000 2 4 .011 10/10 18.8 99174.4 4 m 6 s 4e-15 1e-15

105

Table 5.3: Results of Algorithm 6 on noiseless problems, using steps
RigidCliqueUnion and RigidNodeAbsorb. The values for Average Degree, # Sen-
sors Positioned, and CPU Time are averaged over ten random instances. The values
for Max Error and RMSD values are averaged over the successful instances.

Succ. Avg. # Sensors CPU Max
sensors r anchors R Instances Deg. Positioned Time Error RMSD
2000 2 4 .07 10/10 14.5 2000.0 1 s 6e-13 2e-13
2000 2 4 .06 10/10 10.7 1999.9 1 s 8e-13 3e-13
2000 2 4 .05 10/10 7.5 1996.7 1 s 9e-13 2e-13
2000 2 4 .04 9/10 4.9 1273.8 3 s 2e-11 4e-12
4000 2 4 .07 10/10 29.0 4000.0 2 s 2e-13 6e-14
4000 2 4 .06 10/10 21.5 4000.0 2 s 6e-13 2e-13
4000 2 4 .05 10/10 15.1 3999.9 2 s 6e-13 3e-13
4000 2 4 .04 10/10 9.7 3998.2 2 s 1e-12 5e-13
6000 2 4 .07 10/10 43.5 6000.0 4 s 3e-13 8e-14
6000 2 4 .06 10/10 32.3 6000.0 4 s 2e-13 7e-14
6000 2 4 .05 10/10 22.6 6000.0 3 s 3e-13 1e-13
6000 2 4 .04 10/10 14.6 5999.4 3 s 8e-13 3e-13
8000 2 4 .07 10/10 58.1 8000.0 6 s 3e-13 7e-14
8000 2 4 .06 10/10 43.0 8000.0 5 s 2e-13 8e-14
8000 2 4 .05 10/10 30.1 8000.0 5 s 6e-13 2e-13
8000 2 4 .04 10/10 19.5 8000.0 4 s 7e-13 2e-13
10000 2 4 .07 10/10 72.6 10000.0 9 s 3e-13 7e-14
10000 2 4 .06 10/10 53.8 10000.0 8 s 3e-13 1e-13
10000 2 4 .05 10/10 37.7 10000.0 7 s 5e-13 2e-13
10000 2 4 .04 10/10 24.3 10000.0 6 s 3e-13 1e-13
20000 2 4 .030 10/10 27.6 20000.0 17 s 7e-13 2e-13
40000 2 4 .020 10/10 24.7 40000.0 51 s 2e-12 6e-13
60000 2 4 .015 10/10 21.0 60000.0 1 m 53 s 2e-12 7e-13
80000 2 4 .013 10/10 21.0 80000.0 3 m 21 s 4e-12 1e-12
100000 2 4 .011 10/10 18.8 100000.0 5 m 46 s 2e-10 9e-11

and that there has been a small, almost insignificant, increase in the CPU
time. Table 5.4 reports the results of the same tests, but using the point
representation method – again we observe better accuracy.

3. In Table 5.5 we report the results of increasing the level of our algorithm to
use steps RigidCliqueUnion, RigidNodeAbsorb, and NonRigidCliqueUnion

to solve the random problems, further increasing the class of problems that we
can complete. Tests using all these three steps with the point representation
method are expected in a forth-coming paper, but we expect the results to
be similar to the results obtained using only the rigid steps.

These tests show that our algorithm performs very well, even on very large prob-
lems. We obtain RMSD values on the order of machine precision, regardless of the
problem size; see Table 5.4. Thus, we were able to exactly solve most of these large
semidefinite optimization problems – we did not need a semidefinite optimization

106

Table 5.4: Results of the point representation method on noiseless problems, using
steps RigidCliqueUnion and RigidNodeAbsorb. The values for Average Degree,
Sensors Positioned, and CPU Time are averaged over ten random instances. The
values for Max Error and RMSD values are averaged over the successful instances.

Succ. Avg. # Sensors CPU Max
sensors r anchors R Instances Deg. Positioned Time Error RMSD
2000 2 4 .07 10/10 14.5 2000.0 1 s 1e-15 5e-16
2000 2 4 .06 10/10 10.7 1999.9 1 s 2e-15 6e-16
2000 2 4 .05 10/10 7.5 1996.7 1 s 3e-15 7e-16
2000 2 4 .04 9/10 4.9 1274.4 2 s 3e-15 7e-16
4000 2 4 .07 10/10 29.0 4000.0 2 s 2e-15 6e-16
4000 2 4 .06 10/10 21.5 4000.0 2 s 1e-15 6e-16
4000 2 4 .05 10/10 15.1 3999.9 2 s 2e-15 5e-16
4000 2 4 .04 10/10 9.7 3998.2 2 s 2e-15 8e-16
6000 2 4 .07 10/10 43.5 6000.0 3 s 1e-15 5e-16
6000 2 4 .06 10/10 32.3 6000.0 3 s 1e-15 5e-16
6000 2 4 .05 10/10 22.6 6000.0 3 s 2e-15 8e-16
6000 2 4 .04 10/10 14.6 5999.4 3 s 2e-15 6e-16
8000 2 4 .07 10/10 58.1 8000.0 5 s 1e-15 5e-16
8000 2 4 .06 10/10 43.0 8000.0 4 s 2e-15 5e-16
8000 2 4 .05 10/10 30.1 8000.0 4 s 2e-15 5e-16
8000 2 4 .04 10/10 19.5 8000.0 4 s 1e-15 5e-16
10000 2 4 .07 10/10 72.6 10000.0 7 s 3e-15 9e-16
10000 2 4 .06 10/10 53.8 10000.0 6 s 2e-15 7e-16
10000 2 4 .05 10/10 37.7 10000.0 6 s 2e-15 6e-16
10000 2 4 .04 10/10 24.3 10000.0 5 s 3e-15 1e-15
20000 2 4 .030 10/10 27.6 20000.0 14 s 2e-15 8e-16
40000 2 4 .020 10/10 24.7 40000.0 42 s 3e-15 8e-16
60000 2 4 .015 10/10 21.0 60000.0 1 m 27 s 3e-15 9e-16
80000 2 4 .013 10/10 21.0 80000.0 2 m 28 s 3e-15 1e-15
100000 2 4 .011 10/10 18.8 100000.0 3 m 55 s 4e-15 1e-15

107

Table 5.5: Results of Algorithm 6 on noiseless problems, using steps
RigidCliqueUnion, RigidNodeAbsorb, and NonRigidCliqueUnion. The values
for Average Degree, # Sensors Positioned, and CPU Time are averaged over ten
random instances. The values for Max Error and RMSD values are averaged over
the successful instances. The results of the tests with more than 6000 sensors
remain the same as in Table 5.3.

Succ. Avg. # Sensors CPU Max
sensors r anchors R Instances Deg. Positioned Time Error RMSD
2000 2 4 .07 10/10 14.5 2000.0 1 s 6e-13 2e-13
2000 2 4 .06 10/10 10.7 1999.9 1 s 8e-13 3e-13
2000 2 4 .05 10/10 7.5 1997.9 1 s 9e-13 2e-13
2000 2 4 .04 10/10 4.9 1590.8 5 s 2e-11 7e-12
4000 2 4 .07 10/10 29.0 4000.0 2 s 2e-13 6e-14
4000 2 4 .06 10/10 21.5 4000.0 2 s 6e-13 2e-13
4000 2 4 .05 10/10 15.1 3999.9 2 s 6e-13 3e-13
4000 2 4 .04 10/10 9.7 3998.2 3 s 1e-12 5e-13
6000 2 4 .07 10/10 43.5 6000.0 4 s 3e-13 8e-14
6000 2 4 .06 10/10 32.3 6000.0 4 s 2e-13 7e-14
6000 2 4 .05 10/10 22.6 6000.0 3 s 3e-13 1e-13
6000 2 4 .04 10/10 14.6 5999.4 3 s 8e-13 3e-13

solver because the facial reduction allowed us to determine that the feasible set was
a singleton and could then be easily computed by solving a simple linear equation;
see Theorem 4.14.

Testing a version of our algorithm that uses all four steps is still ongoing. From
the above results, we can see that our facial reduction technique works very well
for solving many instances of the sensor network localization problem. We are
confident that the results of our ongoing tests will continue to show that we are
able to solve an even larger class of sensor network localization problems.

5.1.4 Noisy data and higher dimensional problems

We used the multiplicative noise model noise model for our tests on noisy problems:

dij = ‖pi − pj‖(1 + σεij), for all ij ∈ E,

where σ ≥ 0 represents the noise factor and, for all ij ∈ E, the random variable
εij is normally distributed with zero mean and standard deviation one. That is,
{εij}ij∈E are uncorrelated, have zero mean and the same variance. Here we are
modelling the situation that the amount of additive noise corrupting a distance
measurement between two sensors is directly proportional to the distance between
the sensors.

This multiplicative noise model is the one most commonly considered in sensor
network localization; see, for example, Biswas and Ye (2004), Biswas et al. (2006),

108

Tseng (2007), Wang et al. (2008), Pong and Tseng (2010), Kim et al. (2009a,b).
For large values of σ, it is possible that 1 + σε is negative. Therefore, the alternate
multiplicative noise model

dij = ‖pi − pj‖|1 + σεij|, for all ij ∈ E,

is sometimes used. Note, however, that in both multiplicative noise models, we
have

d2
ij = ‖pi − pj‖2(1 + σεij)

2, for all ij ∈ E. (5.1)

Therefore, when generating our noisy problems, we have used equation (5.1).

The associated least squares problem for determining the maximum likelihood
positions for p1, . . . , pn ∈ Rr is

minimize
∑
ij∈E

v2
ij

subject to ‖pi − pj‖2(1 + vij)
2 = d2

ij, for all ij ∈ E∑n
i=1 pi = 0

p1, . . . , pn ∈ Rr.

Let H be the 0–1 adjacency matrix associated with the n-by-n partial Euclidean
distance matrix D := (d2

ij). Letting V := (vij) ∈ Rn×n and VH := H ◦ V , we can
use the K map defined in equation (2.5), to rewrite this problem as

minimize ‖VH‖2
F

subject to K(PP T) ◦ (H + 2VH + VH ◦ VH) = H ◦D
P T e = 0
P ∈ Rn×r.

Removing the rank constraint, we obtain the (nonlinear) semidefinite relaxation

minimize ‖VH‖2
F

subject to K(Y) ◦ (H + 2VH + VH ◦ VH) = H ◦D
Y ∈ Sn+ ∩ SC .

(5.2)

However, we should note that we have not used any refinement technique in
our numerical tests on noisy problems. We are currently investigating refinement
techniques, and will look at local search methods applied to the nonlinear least
squares problems mentioned here. Our main point is that it is important to match
the noise model with the appropriate least squares problem when handling noisy
problems.

Instead, our approach here to handling noisy problems was to simply compute
the nearest rank r matrix to the matrix K†(D[C]), for each clique C, using the
well-know Eckert-Young result, Theorem 3.5. In other words, to represent our face,
we only use the eigenvectors corresponding to the r largest (in absolute value)
eigenvalues.

In our future work, we plan to compare the following two approaches. Let D
be an n-by-n Euclidean distance matrix corrupted by noise (hence D may not even
be a true Euclidean distance matrix since K†(D) may have negative eigenvalues).

109

1. We compute the eigenvalue decomposition K†(D) = UΛUT , and let P :=

UrΛ
1/2
r ∈ Rn×r. This matrix P minimizes

∥∥PP T −K†(D)
∥∥
F

over all P ∈
Rn×r, and satisfies

∥∥PP T −K†(D)
∥∥
F

=

√√√√ n∑
i=r+1

λ2
i (K†(D)).

Since we assume that diag(D) = 0, we have that KK†(D) = D. Therefore,∥∥K(PP T)−D
∥∥
F

=
∥∥K(PP T −K†(D))

∥∥
F

≤ ‖K‖F ·
∥∥PP T −K†(D)

∥∥
F

= 2
√
n

√√√√ n∑
i=r+1

λ2
i (K†(D)).

2. We can compute better Euclidean distance matrix approximations of D by
increasing the rank of the approximation PP T of K†(D). That is, we let

P := UkΛ
1/2
k ∈ Rn×k, for some k > r; see, for example, (Alfakih et al., 1999,

Lemma 2). Our facial reduction technique lends well to this approach. There
is no problem for us to compute the intersection of different faces that occupy
different dimensions. This investigation is ongoing.

The results of our noisy and higher dimensional tests are as follows.

1. In Table 5.6 we report the result of using the rigid steps RigidCliqueUnion

and RigidNodeAbsorb on problems in R2 and R3 with and without noise.

2. Table 5.7 runs the same tests, but with the point representation method using
the rigid steps.

5.1.5 Comparison with existing algorithms

We now compare our running times and accuracy to the existing SDP-based algo-
rithms. Currently, the Sparse FSDP (SFSDP) method of Kim et al. (2008, 2009a,b)
and the Log-barrier Penalty Coordinate Gradient Descent (LPCGD) method of
Pong and Tseng (2010) are the most efficient SDP-based methods available. Before
these methods came out, the ESDP method from Wang et al. (2008) was the most
efficient SDP-based algorithm for solving the sensor network localization problem.

First we note that most of the tests run in Kim et al. (2009b) and Pong and
Tseng (2010) have 10% of the nodes in the network as anchors and 90% as sensors.
The reason for having so many anchors is that SDP-based methods typically require

110

Table 5.6: Results of Algorithm 6 for problems with noise and r = 2, 3, using
RigidCliqueUnion and RigidNodeAbsorb. The values for Average Degree, # Sen-
sors Positioned, CPU Time, Max Error and RMSD are averaged over ten random
instances.

Avg. # Sensors CPU Max
σ sensors r anchors R Deg. Positioned Time Error RMSD
0 2000 2 4 .08 18.8 2000.0 1 s 1e-13 3e-14

1e-6 2000 2 4 .08 18.8 2000.0 1 s 2e-04 4e-05
1e-4 2000 2 4 .08 18.8 2000.0 1 s 2e-02 4e-03
1e-2 2000 2 4 .08 18.8 2000.0 1 s 2e+01 3e+00

0 6000 2 4 .06 32.3 6000.0 4 s 2e-13 7e-14
1e-6 6000 2 4 .06 32.3 6000.0 4 s 8e-04 3e-04
1e-4 6000 2 4 .06 32.3 6000.0 4 s 9e-02 3e-02
1e-2 6000 2 4 .06 32.3 6000.0 4 s 2e+01 3e+00

0 10000 2 4 .04 24.3 10000.0 6 s 3e-13 1e-13
1e-6 10000 2 4 .04 24.3 10000.0 6 s 5e-04 2e-04
1e-4 10000 2 4 .04 24.3 10000.0 6 s 5e-02 2e-02
1e-2 10000 2 4 .04 24.3 10000.0 7 s 4e+02 1e+02

0 2000 3 5 .20 26.6 2000.0 1 s 3e-13 8e-14
1e-6 2000 3 5 .20 26.6 2000.0 1 s 7e-04 2e-04
1e-4 2000 3 5 .20 26.6 2000.0 1 s 8e-02 2e-02
1e-2 2000 3 5 .20 26.6 2000.0 1 s 2e+03 4e+02

0 6000 3 5 .15 35.6 6000.0 5 s 3e-13 6e-14
1e-6 6000 3 5 .15 35.6 6000.0 5 s 1e-03 2e-04
1e-4 6000 3 5 .15 35.6 6000.0 5 s 1e-01 2e-02
1e-2 6000 3 5 .15 35.6 6000.0 6 s 9e+01 9e+00

0 10000 3 5 .10 18.7 10000.0 9 s 3e-12 2e-13
1e-6 10000 3 5 .10 18.7 10000.0 10 s 4e-02 2e-03
1e-4 10000 3 5 .10 18.7 10000.0 10 s 2e+00 8e-02
1e-2 10000 3 5 .10 18.7 10000.0 10 s 4e+02 1e+01

111

Table 5.7: Results of the point representation method for problems with noise and
r = 2, 3, using RigidCliqueUnion and RigidNodeAbsorb. The values for Average
Degree, # Sensors Positioned, CPU Time, Max Error and RMSD are averaged over
ten random instances.

Avg. # Sensors CPU Max
σ sensors r anchors R Deg. Positioned Time Error RMSD
0 2000 2 4 .08 18.8 2000.0 1 s 1e-15 5e-16

1e-6 2000 2 4 .08 18.8 2000.0 1 s 3e-06 1e-06
1e-4 2000 2 4 .08 18.8 2000.0 1 s 3e-04 1e-04
1e-2 2000 2 4 .08 18.8 2000.0 1 s 3e-01 7e-02

0 6000 2 4 .06 32.3 6000.0 3 s 1e-15 5e-16
1e-6 6000 2 4 .06 32.3 6000.0 3 s 3e-06 1e-06
1e-4 6000 2 4 .06 32.3 6000.0 3 s 3e-04 1e-04
1e-2 6000 2 4 .06 32.3 6000.0 3 s 7e-01 2e-01

0 10000 2 4 .04 24.3 10000.0 5 s 3e-15 1e-15
1e-6 10000 2 4 .04 24.3 10000.0 5 s 4e-06 1e-06
1e-4 10000 2 4 .04 24.3 10000.0 5 s 4e-04 1e-04
1e-2 10000 2 4 .04 24.3 10000.0 5 s 6e-01 2e-01

0 2000 3 5 .20 26.6 2000.0 1 s 4e-15 2e-15
1e-6 2000 3 5 .20 26.6 2000.0 1 s 8e-06 3e-06
1e-4 2000 3 5 .20 26.6 2000.0 1 s 8e-04 3e-04
1e-2 2000 3 5 .20 26.6 2000.0 1 s 7e-01 2e-01

0 6000 3 5 .15 35.6 6000.0 4 s 4e-15 1e-15
1e-6 6000 3 5 .15 35.6 6000.0 4 s 7e-06 2e-06
1e-4 6000 3 5 .15 35.6 6000.0 4 s 2e-02 2e-03
1e-2 6000 3 5 .15 35.6 6000.0 4 s 6e-01 1e-01

0 10000 3 5 .10 18.7 10000.0 7 s 5e-15 2e-15
1e-6 10000 3 5 .10 18.7 10000.0 7 s 1e-05 4e-06
1e-4 10000 3 5 .10 18.7 10000.0 7 s 6e-02 3e-03
1e-2 10000 3 5 .10 18.7 10000.0 7 s 1e+00 3e-01

112

the sensors to be in the convex hull of the anchors in order to return good solu-
tions – if the anchors are chosen randomly, this requirement can be met by having
many anchors. However, we found that our SNLSDPclique algorithm is capable of
returning very good solutions even with only a few randomly placed anchor nodes.
Indeed, we ran the SFSDP code on random instances like those in our tests and
found that sensors far away from the convex hull of the anchors were very poorly
localized. Therefore, a side-by-side comparison is difficult since they require many
anchors whereas we need only a few anchors.

Another major difference between the SFSDP and LPCGD methods and our
SNLSDPclique algorithm is that they require very sparse problems in order to run
efficiently (for example, edge-sparsification heuristics are used in Kim et al. (2009b)
and Pong and Tseng (2010) to speed-up their computations), whereas we are able
to handle problems with many distance constraints quite efficiently. In fact, we can
see from Table 5.4 that having too few distance constraints can be a problem for us
since we may not be able to localize all the sensors in the network. Again, this fact
makes a side-by-side comparison of our algorithm with the SFSDP and LPCGD
methods difficult.

From the results in Pong and Tseng (2010), we see that the best variant of the
LPCGD method requires about twice as much CPU time as the times reported in
Table 5.4 for problems with up to 10, 000 nodes; moreover, the LPCGD method
can only attain RMSD values on the order of 1e-3 for noiseless problems. However,
we see in Table 5.4 that our SNLSDPclique algorithm attains RMSD values on
the order of 1e-16 for noiseless problems, regardless of problem size. For noisy
problems with a 1% noise factor, the LPCGD method again attains RMSD values
on the order of 1e-3 (see Pong and Tseng (2010)); however, from Table 5.7 we see
that our SNLSDPclique algorithm can only attain RMSD values on the order of
1e-1 for problems with a 1% noise factor.

From the latest results in Kim et al. (2009b), we see that the SFSDP method
is able to attain RMSD values on the order of 1e-3 for two-dimensional problems
with noise factors from 1% to 20%; however, the computation times are roughly six
minutes for a problem with 6,000 nodes with four anchors at the corners of [0, 1]2,
three minutes for a problem with 9,000 sensors and 1,000 randomly placed anchors,
and nine minutes for a problem with 18,000 sensors and 2,000 randomly placed
anchors. The CPU times we obtain for the SNLSDPclique algorithm in Table 5.4
are orders of magnitude smaller than the running times for the SFSDP method,
although the RMSD values we obtain for noisy problems in Table 5.7 are much
larger than those reported in Kim et al. (2009b) for the SFSDP method, unless the
noise factor is very small, say less than 1e-6.

In conclusion, we find that our SNLSDPclique algorithm clearly outperforms the
existing methods in terms of CPU time and accuracy on problems with very low
noise. However, our method currently does not do anything special to handle noisy
problems (for example, no refinement technique was used in our tests), and at this
time we find that it is not competitive with the existing methods for accurately

113

solving problems with medium to high noise. We feel confident that combining our
facial reduction algorithm together with techniques for handling noise will produce
a code which will be highly competitive in terms of both CPU time and solution
accuracy.

5.2 Molecular conformation tests

We now present the results of testing our algorithm on molecular conformation
problems. We follow the tests in Biswas et al. (2008). The main purpose here is
not to claim we can solve molecular conformation problems well; our purpose is
to investigate how our code runs on problems that have a different structure, that
are not randomly generated, that come from a real-life source, and that have no
anchors.

Molecular data was obtained from the Protein Data Bank Berman et al. (2002).
Atomic positions p1, . . . , pn ∈ R3 were extracted from the PDB files; lines of the
PDB files beginning with ATOM or HETATM contain the relative coordinates of the
atoms in R3, measured in ångströms, where 1Å = 10−10m. Using these atomic
positions, we computed the interatomic distances less than some range R > 0; that
is, we generate the the n× n partial Euclidean distance matrix Dp according to

(Dp)ij =

{
‖pi − pj‖2, if ‖pi − pj‖ < R

unspecified, otherwise.

For the noisy tests, we again use the multiplicative noise model (5.1). As mentioned
before, NMR can be used to measure interatomic distances in the range of 5–6Å;
longer ranges of up to 8Å are possible, but come at a cost of structural modification
of the molecule Yuen et al. (2010). Therefore, we have run our tests using R = 5Å,
6Å, 7Å, 8Å.

We used the same computing environment as in our sensor network localization
tests. Due to the improved accuracy observed for the point representation method
in the sensor network localization tests, we have only tested the point representation
method here on these molecular conformation instances.

The tables are labelled in a similar manner as in the sensor network localization
tests. The only exception is how the Max Error and RMSD values are computed.
Since we do not have absolute positions, we measure how well the computed solution
fits the true solution by solving a Procrustes problem. That is, we let (Q, c) ∈
Rr×r × Rr be an optimal solution to the problem

min

{ ∑
i positioned

∥∥(Qpi + c)− ptrue
i

∥∥2
: (Q, c) ∈ Rr×r × Rr, QTQ = I

}
.

114

We then compute Max Error and RMSD as follows:

Max Error := max
i positioned

‖(Qpi + c)− ptrue
i ‖2;

RMSD :=

(
1

positioned

∑
i positioned

‖(Qpi + c)− ptrue
i ‖2

2

) 1
2

.

The results of our tests are as follows.

1. Table 5.8 gives the results of the point representation algorithm using the rigid
steps on noiseless molecular conformation problems, for various measurement
ranges. As we can see, the accuracy is not as good as in the sensor network
localization tests. Possible reasons for this are: these molecular conformation
problems are not randomly generated and have a much different structure
than our previous tests; there are no anchors.

2. Table 5.9 gives the results of the point representation algorithm using the
rigid steps on noisy molecular conformation problems with range fixed at
R = 7Å for all problems. We chose R = 7Å here since that ensures all atoms
will be positioned, as can be seen from Table 5.8. From these noisy tests
we see that some molecules are easier to solve than others. As an example,
Figure 5.1 provides graphical representations of the solutions we obtained for
the 1RGS protein molecule for different levels of noise. We can see from these
images that our algorithm has difficulty solving problems with higher levels
of noise.

In conclusion, we see that while the CPU times remain impressively fast for
these molecular problems, the accuracy we obtain is not as good as the accuracy
obtained in the sensor network localization tests. Comparing our results with the
results in Biswas et al. (2008), we find that while our code takes only seconds to
solve these problems, the method from Biswas et al. (2008) requires a couple of
minutes to more than twenty minutes. However, the RMSD values obtained by
Biswas et al. (2008) for problems with 10% noise was on the order of 1e+0; the
RMSD values we obtained were on the order of 1e+1 for problems with 10% noise.

115

Table 5.8: Results of the point representation method on noiseless molecular con-
formation problems, using RigidCliqueUnion and RigidNodeAbsorb. The values
for Average Degree, # Atoms Positioned, CPU Time, Max Error and RMSD are
averaged over ten random instances. We have labelled with an asterisk the instances
where not all atoms were positioned.

Molecule # Avg. # Atoms CPU Max
name atoms R Deg. Positioned Time Error RMSD
1PTQ 404 8Å 35.2 404.0 0.3 s 4e-14 2e-14
1PTQ 404 7Å 25.9 404.0 0.2 s 3e-14 1e-14
1PTQ 404 6Å 17.8 404.0 0.2 s 4e-14 2e-14
1PTQ 404 5Å 11.0 404.0 0.2 s 3e-13 3e-14
1LFB 641 8Å 35.1 641.0 0.3 s 7e-014 3e-14
1LFB 641 7Å 25.9 641.0 0.3 s 5e-014 3e-14
1LFB 641 6Å 17.8 641.0 0.3 s 6e-014 2e-14
1LFB 641 5Å 10.9 641.0 0.3 s 1e-013 3e-14
1F39 1653 8Å 40.3 1653.0 0.8 s 4e-13 9e-14
1F39 1653 7Å 28.6 1653.0 0.8 s 2e-13 1e-13
1F39 1653 6Å 19.1 1653.0 0.8 s 3e-13 1e-13
1F39 1653 5Å 11.6 1653.0 1.1 s 2e-13 1e-13
1RGS 2059 8Å 39.6 2059.0 1.2 s 2e-13 2e-13
1RGS 2059 7Å 28.6 2059.0 1.1 s 3e-13 2e-13
1RGS 2059 6Å 19.3 2059.0 1.1 s 4e-13 2e-13
1RGS 2059 5Å 11.5 *2054.0 1.2 s 2e-12 3e-13
1HQQ 4116 8Å 44.1 4116.0 2.6 s 3e-13 2e-13
1HQQ 4116 7Å 31.0 4116.0 2.2 s 2e-13 8e-14
1HQQ 4116 6Å 20.4 4116.0 2.2 s 2e-13 8e-14
1HQQ 4116 5Å 12.3 *4114.0 3.1 s 3e-12 3e-13
1I7W 9360 8Å 44.3 9360.0 10 s 1e-12 6e-13
1I7W 9360 7Å 31.4 9360.0 9 s 1e-12 6e-13
1I7W 9360 6Å 21.0 *9359.0 10 s 2e-12 7e-13
1I7W 9360 5Å 12.6 *9350.0 14 s 2e-12 7e-13

116

Table 5.9: Results of the point representation method on molecular conformation
problems with R = 7Å, using RigidCliqueUnion and RigidNodeAbsorb. The
values for Average Degree, # Atoms Positioned, CPU Time, Max Error and RMSD
are averaged over ten random instances.

Molecule # Avg. # Atoms CPU Max
σ name atoms R Deg. Positioned Time Error RMSD

1e-6 1PTQ 404 7Å 25.9 404.0 0.2 s 1e-04 4e-05
1e-5 1PTQ 404 7Å 25.9 404.0 0.2 s 1e-03 4e-04
1e-4 1PTQ 404 7Å 25.9 404.0 0.2 s 1e-02 4e-03
1e-3 1PTQ 404 7Å 25.9 404.0 0.2 s 1e+01 3e+00
1e-2 1PTQ 404 7Å 25.9 404.0 0.2 s 1e+01 4e+00
1e-1 1PTQ 404 7Å 25.9 404.0 0.2 s 1e+01 4e+00
1e-6 1LFB 641 7Å 25.9 641.0 0.3 s 9e-05 3e-05
1e-5 1LFB 641 7Å 25.9 641.0 0.3 s 9e-04 3e-04
1e-4 1LFB 641 7Å 25.9 641.0 0.3 s 9e-03 3e-03
1e-3 1LFB 641 7Å 25.9 641.0 0.3 s 8e-02 3e-02
1e-2 1LFB 641 7Å 25.9 641.0 0.3 s 2e+00 7e-01
1e-1 1LFB 641 7Å 25.9 641.0 0.3 s 2e+01 8e+00
1e-6 1F39 1653 7Å 28.6 1653.0 0.8 s 3e-04 8e-05
1e-5 1F39 1653 7Å 28.6 1653.0 0.8 s 3e-03 8e-04
1e-4 1F39 1653 7Å 28.6 1653.0 0.8 s 2e+00 1e-01
1e-3 1F39 1653 7Å 28.6 1653.0 0.8 s 1e+01 4e+00
1e-2 1F39 1653 7Å 28.6 1653.0 0.8 s 2e+01 7e+00
1e-1 1F39 1653 7Å 28.6 1653.0 0.8 s 4e+01 1e+01
1e-6 1RGS 2059 7Å 28.6 2059.0 1.1 s 4e-04 1e-04
1e-5 1RGS 2059 7Å 28.6 2059.0 1.1 s 4e-03 1e-03
1e-4 1RGS 2059 7Å 28.6 2059.0 1.1 s 4e-02 1e-02
1e-3 1RGS 2059 7Å 28.6 2059.0 1.1 s 3e+01 1e+01
1e-2 1RGS 2059 7Å 28.6 2059.0 1.1 s 3e+01 1e+01
1e-1 1RGS 2059 7Å 28.6 2059.0 1.1 s 3e+01 2e+01
1e-6 1HQQ 4116 7Å 31.0 4116.0 2.2 s 4e-04 1e-04
1e-5 1HQQ 4116 7Å 31.0 4116.0 2.2 s 1e+00 3e-01
1e-4 1HQQ 4116 7Å 31.0 4116.0 2.2 s 2e+01 4e+00
1e-3 1HQQ 4116 7Å 31.0 4116.0 2.2 s 3e+01 6e+00
1e-2 1HQQ 4116 7Å 31.0 4116.0 2.2 s 4e+01 1e+01
1e-1 1HQQ 4116 7Å 31.0 4116.0 2.2 s 5e+01 2e+01
1e-6 1I7W 9360 7Å 31.4 9360.0 12 s 2e-03 4e-04
1e-5 1I7W 9360 7Å 31.4 9360.0 12 s 2e-02 4e-03
1e-4 1I7W 9360 7Å 31.4 9360.0 12 s 1e+01 2e+00
1e-3 1I7W 9360 7Å 31.4 9360.0 12 s 4e+01 1e+01
1e-2 1I7W 9360 7Å 31.4 9360.0 12 s 6e+01 2e+01
1e-1 1I7W 9360 7Å 31.4 9360.0 12 s 9e+01 4e+01

117

30

40

50

60

70

80

90

40

50

60

70

70

75

80

85

90

95

100

105

1RGS
nf = 0%, RMSD = 0.000

30

40

50

60

70

80

90

40

50

60

70

70

75

80

85

90

95

100

105

1RGS
nf = 0.01%, RMSD = 0.011

30

40

50

60

70

80

90

40

50

60

70

70

75

80

85

90

95

100

105

1RGS
nf = 0.1%, RMSD = 0.106

30

40

50

60

70

80

90

40

50

60

70

70

75

80

85

90

95

100

105

1RGS
nf = 1%, RMSD = 11.979

30

40

50

60

70

80

90

40

50

60

70

70

75

80

85

90

95

100

105

1RGS
nf = 10%, RMSD = 16.015

Figure 5.1: Three dimensional plots of the solutions obtained for the 1RGS protein
(2059 atoms) with R = 7Å and for different levels of noise. The plots in the first
column indicate the true positions (blue circles) and the computed positions (red
asterisks) of the atoms. The atomic bonds are indicated in the second column with
the computed positions of the atoms. The last column contains the corresponding
ribbon plots, used for picturing the structure of the molecule.
Molecular graphics images in the second and third columns were produced using
the UCSF Chimera package from the Resource for Biocomputing, Visualization,
and Informatics at the University of California, San Francisco (supported by NIH
P41 RR-01081); see Pettersen et al. (2004) for more information.

118

Chapter 6

Conclusions and Future Work

We have developmed a theory of semidefinite facial reduction for the Euclidean
distance matrix completion problem. This theory is based on our novel result
showing a close connection between cliques in the graph of the partial Euclidean
distance matrix and faces of the semidefinite cone containing the feasible set of the
semidefinite relaxation. This theory allows us to dramatically reduce the number
of variables and constraints required to represent this semidefinite feasible set. Un-
der certain circumstances, we are even able to use this facial reduction technique
to determine that there is a single feasible solution, and that this solution can be
computed without the need for a semidefinite optimization solver. Furthermore, we
have used this theory to develop a highly efficient algorithm capable of solving many
very large-scale Euclidean distance matrix completion problems exactly. For prob-
lems with a low level of noise, our SNLSDPclique Algorithm 6 clearly outperforms
existing algorithms in terms of CPU time and accuracy.

Our facial reduction results also have wide applicability beyond the development
of our EDMSDPclique Algorithm 1 and specialized SNLSDPclique Algorithm 6. In-
deed, we have already seen our results on disjoint subset facial reduction Theo-
rem 4.5 and distance constraint reduction Theorem 4.16 applied with great success
to reduce the size of semidefinite optimization problems in the machine learning
area of manifold unfolding; see our paper Alipanahi et al. (2010). Our theory can
therefore be used to aid in the solution of much larger semidefinite relaxations of
Euclidean distance matrix problems than was previously possible. We hope this
contribution proves to be very useful in the applied areas mentioned in Chapter 1,
and many others.

6.1 Future work

The results from this thesis have opened up many possibilities for future work.

1. Noisy problems : We would like to investigate techniques for handling noisy
problems, such as the refinement techniques discussed in the literature, and

119

combine this with our facial reduction theory to be able to solve very large
problems in less time and with more accuracy. We have already mentioned
some ideas in this direction, such as the working with the nonlinear semidef-
inite optimization problem (5.2), or allowing the rank of the approximate
Gram matrix of a noisy Euclidean distance matrix to increase. This latter
approach would then give us higher dimensional faces. In the algorithms pre-
sented here, we strictly maintained the dimension of the faces by ensuring
that the Ū part of U in Theorem 4.4 always had r + 1 columns; indeed, the
intersection lemmas we give here (for example, Lemma 4.11) assume that
Ū1 and Ū2 both have r + 1 columns. With this more general approach, it
will no longer be the case that all computed faces have r + 1 columns for Ū .
Therefore, we must generalize the intersection lemmas to find expressions for
intersecting two faces where Ū1 and Ū2 have a different number of columns. In
the end, we hope to have computed a face containing our feasible set, but that
is more flexible in terms of the noisy distances. Combining this higher facial
dimension approach with an appropriate least-squares refinement technique
holds promise for solving very large noisy problems accurately.

2. Non-uniquely localizable problems : To find a localization of a non-uniquely
localizable problem in a low dimensional space Weinberger et al. (2004) and
Biswas et al. (2006) have suggested the regularization technique of maximizing
the trace of the Gram matrix in the semidefinite relaxation in order to encour-
age the points to spread out and “flatten” the graph. We plan to investigate
the use of our facial reduction procedure together with such a regularization
technique. In this case, our facial reduction would be a preprocessor to reduce
the size of the problem before passing it to a semidefinite optimization solver.
However, since sensor network localization of non-uniquely localizable prob-
lems is NP-hard, we do not expect to be able to solve every problem efficiently
with this regularization technique; however, we do expect to get improved re-
sults for a wide class of problems. It will also be interesting to compare this
regularization technique to the nuclear norm minimization heuristic for rank
minimization.

3. Chordal extensions : There is a close connection between the results we have
developed here and the results of Bakonyi and Johnson (1995) on Euclidean
distance matrix completion problems with chordal graphs. Our technique
focusses on cliques in the graph of the partial Euclidean distance matrix. It is
well known that determining the maximal cliques in a chordal graph is very
inexpensive. This connection may open up some interesting results in the
area of Euclidean distance matrix completion.

4. Molecular conformation and multi-dimensional scaling : We would like to re-
turn to the problem of molecular conformation to see if our facial reduction
approach with regularization and noise-handling techniques can improve our
numerical results. In addition, the area of multi-dimensional scaling holds

120

much promise for our facial reduction technique, as seen in the successful
application of our results to the problem of manifold unfolding.

5. Extending facial reduction to other matrix completion problems : It seems pos-
sible to extend our results to the problem of correlation matrix completion. A
correlation matrix is a positive semidefinite matrix with ones on the diagonal.
Other matrix completion problems may also benefit from our results here.

We look forward to investigating these and other questions arising from this
study on facial reduction for the semidefinite relaxation of the Euclidean distance
matrix completion problem.

121

References

Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). Wireless
sensor networks: a survey. Computer networks, 38(4):393–422. 5

Al-Homidan, S. and Wolkowicz, H. (2005). Approximate and exact completion
problems for Euclidean distance matrices using semidefinite programming. Linear
Algebra Appl., 406:109–141. 4, 25, 26, 27, 29, 31

Alfakih, A. Y. (2000). Graph rigidity via Euclidean distance matrices. Linear
Algebra Appl., 310(1-3):149–165. 4

Alfakih, A. Y. (2001). On rigidity and realizability of weighted graphs. Linear
Algebra Appl., 325(1-3):57–70. 4

Alfakih, A. Y. (2003). On the uniqueness of Euclidean distance matrix completions.
Linear Algebra Appl., 370:1–14. 3, 39

Alfakih, A. Y. (2005). On the uniqueness of Euclidean distance matrix completions:
the case of points in general position. Linear Algebra Appl., 397:265–277. 3, 39

Alfakih, A. Y. (2006a). On the nullspace, the rangespace and the characteristic
polynomial of Euclidean distance matrices. Linear Algebra Appl., 416(2-3):348–
354. 4

Alfakih, A. Y. (2006b). A remark on the faces of the cone of Euclidean distance
matrices. Linear Algebra Appl., 414(1):266–270. 4

Alfakih, A. Y. (2007). On dimensional rigidity of bar-and-joint frameworks. Discrete
Appl. Math., 155(10):1244–1253. 4

Alfakih, A. Y., Anjos, M. F., Piccialli, V., and Wolkowicz, H. (2009). Euclidean
distance matrices, semidefinite programming, and sensor network localization.
Technical report, University of Waterloo. 4, 40

Alfakih, A. Y., Khandani, A., and Wolkowicz, H. (1999). Solving Euclidean dis-
tance matrix completion problems via semidefinite programming. Comput. Op-
tim. Appl., 12(1-3):13–30. 4, 31, 110

Alfakih, A. Y. and Wolkowicz, H. (2002). Two theorems on Euclidean distance
matrices and Gale transform. Linear Algebra Appl., 340:149–154. 4

122

Alipanahi, B., Ghodsi, A., and Krislock, N. (2010). Manifold unfolding by Euclidean
distance matrix completion. Submitted to the 2010 AAAI Conference on Artificial
Intelligence. 119

Alizadeh, F. (1995). Interior point methods in semidefinite programming with appli-
cations to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–
51. 2

Ames, B. P. and Vavasis, S. A. (2009). Nuclear norm minimization for the planted
clique and biclique problems. Technical report, University of Waterloo. 46

An, L. T. H. and Tao, P. D. (2003). Large-scale molecular optimization from dis-
tance matrices by a D.C. optimization approach. SIAM Journal on Optimization,
14(1):77–114. 6

Andersen, E. D. and Andersen, K. D. (1995). Presolving in linear programming.
Mathematical Programming, 71(2):221–245. 63

Aspnes, J., Eren, T., Goldenberg, D., Morse, A., Whiteley, W., Yang, Y., An-
derson, B., and Belhumeur, P. (2006). A theory of network localization. IEEE
Transactions on Mobile Computing, 5(12):1663–1678. 5, 41, 56

Aspnes, J., Goldenberg, D., and Yang, Y. (2004). On the computational complexity
of sensor network localization. Lecture Notes in Computer Science, 3121:32–44.
5, 41, 56

Bădoiu, M., Demaine, E. D., Hajiaghayi, M., and Indyk, P. (2006). Low-
dimensional embedding with extra information. Discrete Comput. Geom.,
36(4):609–632. 41

Bakonyi, M. and Johnson, C. R. (1995). The Euclidean distance matrix completion
problem. SIAM Journal on Matrix Analysis and Applications, 16(2):646–654. 3,
37, 38, 120

Barker, G. and Carlson, D. (1975). Cones of diagonally dominant matrices. Pacific
J. of Math., 57:15–32. 4, 21

Barker, G. P. (1973). The lattice of faces of a finite dimensional cone. Linear
Algebra and Appl., 7:71–82. 4, 21

Barker, G. P. (1978). Faces and duality in convex cones. Linear and Multilinear
Algebra, 6(3):161–169. 4

Barvinok, A. (1995). Problems of distance geometry and convex properties of
quadratic maps. Discrete and Computational Geometry, 13(1):189–202. 4

Beck, A., Stoica, P., and Li, J. (2008a). Exact and approximate solutions of source
localization problems. Signal Processing, IEEE Transactions on, 56(5):1770–
1778. 5

123

Beck, A., Teboulle, M., and Chikishev, Z. (2008b). Iterative minimization schemes
for solving the single source localization problem. SIAM Journal on Optimization,
19(3):1397–1416. 5

Belk, M. (2007). Realizability of graphs in three dimensions. Discrete Comput.
Geom., 37(2):139–162. 4

Belk, M. and Connelly, R. (2007). Realizability of graphs. Discrete Comput. Geom.,
37(2):125–137. 4

Ben-Israel, A. and Greville, T. N. E. (2003). Generalized Inverses: Theory and
Applications. Wiley-Interscience, 2nd edition. 14

Berman, A. (1973). Cones, matrices and mathematical programming. Springer-
Verlag, Berlin. Lecture Notes in Economics and Mathematical Systems, Vol. 79.
16, 34

Berman, A. and Ben-Israel, A. (1971). Linear inequalities, mathematical program-
ming and matrix theory. Mathematical Programming, 1(1):291–300. 16

Berman, A. and Plemmons, R. J. (1979). Nonnegative Matrices in the Mathematical
Sciences. Academic Press. 32

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E.,
Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Mar-
vin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H.,
Westbrook, J. D., and Zardecki, C. (2002). The Protein Data Bank. Acta Crys-
tallographica Section D, 58(6):899–907. 61, 114

Biswas, P. (2007). Semidefinite programming approaches to distance geometry prob-
lems. PhD thesis, Stanford University. 5, 6, 54

Biswas, P., Liang, T.-C., Toh, K.-C., Wang, T.-C., and Ye, Y. (2006). Semidefinite
programming approaches for sensor network localization with noisy distance mea-
surements. IEEE Transactions on Automation Science and Engineering, 3:360–
371. 5, 44, 54, 62, 98, 108, 120

Biswas, P., Toh, K.-C., and Ye, Y. (2008). A distributed SDP approach for large-
scale noisy anchor-free graph realization with applications to molecular confor-
mation. SIAM Journal on Scientific Computing, 30(3):1251–1277. 6, 54, 114,
115

Biswas, P. and Ye, Y. (2004). Semidefinite programming for ad hoc wireless sensor
network localization. In IPSN ’04: Proceedings of the 3rd international sympo-
sium on Information processing in sensor networks, pages 46–54, New York, NY,
USA. ACM. 5, 54, 98, 108

124

Biswas, P. and Ye, Y. (2006). A distributed method for solving semidefinite pro-
grams arising from ad hoc wireless sensor network localization. In Multiscale
Optimization Methods and Applications, volume 82 of Nonconvex Optim. Appl.,
pages 69–84. Springer. 5, 54

Björck, Å. (1996). Numerical Methods for Least Squares Problems. SIAM, Philadel-
phia. 11, 57

Blumenthal, L. M. (1970). Theory and applications of distance geometry. Chelsea
Pub. Co. 4

Borwein, J. M. and Lewis, A. S. (2000). Convex Analysis and Nonlinear Optimiza-
tion : Theory and Examples. Springer-Verlag. 15

Borwein, J. M. and Wolkowicz, H. (1981a). Characterization of optimality for the
abstract convex program with finite-dimensional range. J. Austral. Math. Soc.
Ser. A, 30(4):390–411. 4, 21

Borwein, J. M. and Wolkowicz, H. (1981b). Facial reduction for a cone-convex
programming problem. J. Austral. Math. Soc. Ser. A, 30(3):369–380. 4, 21

Borwein, J. M. and Wolkowicz, H. (1981c). Regularizing the abstract convex pro-
gram. J. Math. Anal. Appl., 83(2):495–530. 4, 21

Brearley, A. L., Mitra, G., and Williams, H. P. (1975). Analysis of mathematical
programming problems prior to applying the simplex algorithm. Mathematical
Programming, 8(1):54–83. 63

Bruck, J., Gao, J., and Jiang, A. (2009). Localization and routing in sensor networks
by local angle information. ACM Trans. Sen. Netw., 5(1):1–31. 5

Bulusu, N., Heidemann, J., and Estrin, D. (2000). GPS-less low-cost outdoor
localization for very small devices. Personal Communications, IEEE, 7(5):28–
34. 5

Candès, E. J. and Plan, Y. (2009). Matrix completion with noise. Submitted to
Proceedings of the IEEE. 4, 46

Candès, E. J. and Recht, B. (2008). Exact matrix completion via convex optimiza-
tion. Technical report, Caltech. 4, 45

Carter, M. W., Jin, H. H., Saunders, M. A., and Ye, Y. (2006). SpaseLoc: An
adaptive subproblem algorithm for scalable wireless sensor network localization.
SIAM Journal on Optimization, 17(4):1102–1128. 5

Cassioli, A. (2009). Solving the sensor network localization problem using an heuris-
tic multistage approach. Technical report, Università degli Studi di Firenze. 5

125

Cheung, Y.-L., Schurr, S. P., and Wolkowicz, H. (2010). Numerical solution of ill-
posed semidefinite programs. Technical report, University of Waterloo, Waterloo,
Ontario. In progress. 21, 22, 64

Chua, C. and Tunçel, L. (2008). Invariance and efficiency of convex representations.
Mathematical Programming, 111(1):113–140. 54

Connelly, R. (2005). Generic global rigidity. Discrete Comput. Geom., 33(4):549–
563. 4, 40

Costa, J. A., Patwari, N., and Hero, III, A. O. (2006). Distributed weighted-
multidimensional scaling for node localization in sensor networks. ACM Trans.
Sen. Netw., 2(1):39–64. 5

Crippen, G. M. (1991). Chemical distance geometry: Current realization and future
projection. Journal of Mathematical Chemistry, 6(1):307–324. 6

Crippen, G. M. and Havel, T. F. (1988). Distance Geometry and Molecular Con-
formation, volume 15 of Chemometrics Series. Research Studies Press Ltd.,
Chichester. 6

Critchley, F. (1988). On certain linear mappings between inner-product and squared
distance matrices. Linear Algebra Appl., 105:91–107. 3, 25, 32, 33, 35

Dattorro, J. (2008). Convex Optimization & Euclidean Distance Geometry. Meboo
Publishing USA. 4, 33, 36

Ding, Y., Krislock, N., Qian, J., and Wolkowicz, H. (2008a). Sensor network lo-
calization, Euclidean distance matrix completions, and graph realization. In
MELT ’08: Proceedings of the First ACM International Workshop on Mobile
Entity Localization and Tracking in GPS-less Environments, pages 129–134, New
York, NY, USA. ACM. 54

Ding, Y., Krislock, N., Qian, J., and Wolkowicz, H. (2008b). Sensor network lo-
calization, Euclidean distance matrix completions, and graph realization. Opti-
mization and Engineering, published online. 54, 60

Doherty, L., Pister, K. S. J., and El Ghaoui, L. (2001). Convex position estima-
tion in wireless sensor networks. In INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1655–1663 vol.3. 4

Dong, Q. and Wu, Z. (2002). A linear-time algorithm for solving the molecular
distance geometry problem with exact inter-atomic distances. Journal of Global
Optimization, 22(1):365–375. 6

Dong, Q. and Wu, Z. (2003). A geometric build-up algorithm for solving the
molecular distance geometry problem with sparse distance data. Journal of Global
Optimization, 26(3):321–333. 6

126

dos Santos Carvalho, R., Lavor, C., and Protti, F. (2008). Extending the geometric
build-up algorithm for the molecular distance geometry problem. Information
Processing Letters, 108(4):234 – 237. 6

Eckart, C. and Young, G. (1936). The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218. 57

Emiris, I. Z. and Nikitopoulos, T. G. (2005). Molecular conformation search by
distance matrix perturbations. J. Math. Chem., 37(3):233–253. 6

Eren, T., Goldenberg, O., Whiteley, W., Yang, Y., Morse, A., Anderson, B., and
Belhumeur, P. (2004). Rigidity, computation, and randomization in network
localization. In INFOCOM 2004. Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 4, pages 2673–2684. 4

Farebrother, R. W. (1987). Three theorems with applications to Euclidean distance
matrices. Linear Algebra Appl., 95:11–16. 3

Fazel, M. (2002). Matrix Rank Minimization with Applications. PhD thesis, Stan-
ford University. 4, 45

Fazel, M., Hindi, H., and Boyd, S. (2003). Log-det heuristic for matrix rank min-
imization with applications to Hankel and Euclidean distance matrices. In Pro-
ceedings of the American Control Conference, pages 2156–2162. 4, 46

Fukuda, M., Kojima, M., Murota, K., and Nakata, K. (2001). Exploiting sparsity
in semidefinite programming via matrix completion i: General framework. SIAM
Journal on Optimization, 11(3):647–674. 5

Glunt, W., Hayden, T., and Raydan, M. (1993). Molecular conformations from
distance matrices. Journal of Computational Chemistry, 14(1):114–120. 6

Glunt, W., Hayden, T. L., Hong, S., and Wells, J. (1990). An alternating projection
algorithm for computing the nearest Euclidean distance matrix. SIAM Journal
on Matrix Analysis and Applications, 11(4):589–600. 4

Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. J.
ACM, 42(6):1115–1145. 56

Goldfarb, D. and Scheinberg, K. (1998). Interior point trajectories in semidefinite
programming. SIAM Journal on Optimization, 8(4):871–886. 57

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, 3rd edition. 11, 49

Göring, F., Helmberg, C., and Reiss, S. (2009). Graph realizations associated
with minimizing the maximum eigenvalue of the laplacian. Technical report,
Fakultät für Mathematik, Technischen Universität Chemnitz, Chemnitz, Ger-
many. Preprint. 46

127

Göring, F., Helmberg, C., and Wappler, M. (2008). The rotational dimension of
a graph. Technical report, Fakultät für Mathematik, Technischen Universität
Chemnitz, Chemnitz, Germany. Preprint. 46

Gower, J. C. (1982). Euclidean distance geometry. Math. Sci., 7(1):1–14. 3

Gower, J. C. (1984). Distance matrices and their Euclidean approximation. In
Data analysis and informatics, III (Versailles, 1983), pages 3–21. North-Holland,
Amsterdam. 3

Gower, J. C. (1985). Properties of Euclidean and non-Euclidean distance matrices.
Linear Algebra Appl., 67:81–97. 3

Green, B. (1952). The orthogonal approximation of an oblique structure in factor
analysis. Psychometrika, 17(4):429–440. 49

Grone, R., Johnson, C. R., Sá, E. M., and Wolkowicz, H. (1984). Positive definite
completions of partial Hermitian matrices. Linear Algebra and its Applications,
58:109–124. 3, 38

Grooms, I. G., Lewis, R. M., and Trosset, M. W. (2009). Molecular embedding via
a second order dissimilarity parameterized approach. SIAM Journal on Scientific
Computing, 31(4):2733–2756. 6

Güler, O. and Ye, Y. (1993). Convergence behavior of interior-point algorithms.
Mathematical Programming, 60(1):215–228. 58

Halická, M., de Klerk, E., and Roos, C. (2002). On the convergence of the central
path in semidefinite optimization. SIAM Journal on Optimization, 12(4):1090–
1099. 58

Havel, T., Kuntz, I., and Crippen, G. (1983). The theory and practice of distance
geometry. Bulletin of Mathematical Biology, 45(5):665–720. 6

Havel, T. F. (2003). Metric matrix embedding in protein structure calculations,
NMR spectra analysis, and relaxation theory. Magnetic Resonance in Chemistry,
41:S37–S50. 6

Hayden, T. L., Wells, J., Liu, W. M., and Tarazaga, P. (1991). The cone of distance
matrices. Linear Algebra Appl., 144:153–169. 4, 33

Hendrickson, B. (1990). The Molecule Problem: Determining Conformation from
Pairwise Distances. PhD thesis, Cornell University. 6

Hendrickson, B. (1992). Conditions for unique graph realizations. SIAM Journal
on Computing, 21(1):65–84. 4, 40

Hendrickson, B. (1995). The molecule problem: Exploiting structure in global
optimization. SIAM Journal on Optimization, 5(4):835–857. 4

128

Higham, N. J. (1986). Computing the polar decomposition—with applications.
SIAM Journal on Scientific and Statistical Computing, 7(4):1160–1174. 49

Jackson, B. and Jordán, T. (2005). Connected rigidity matroids and unique real-
izations of graphs. J. Combin. Theory Ser. B, 94(1):1–29. 4

Jin, H. H. (2005). Scalable Sensor Localization Algorithms for Wireless Sensor
Networks. PhD thesis, University of Toronto, Toronto, Ontario, Canada. (Joint
research conducted at Stanford University). 5

Johnson, C. R., Kroschel, B., and Wolkowicz, H. (1998). An interior-point
method for approximate positive semidefinite completions. Comput. Optim.
Appl., 9(2):175–190. 3

Johnson, C. R. and Tarazaga, P. (1995). Connections between the real positive
semidefinite and distance matrix completion problems. Linear Algebra Appl.,
223/224:375–391. Special issue honoring Miroslav Fiedler and Vlastimil Pták. 3,
25

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity
of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), pages 85–103. Plenum, New York. 40

Kim, S., Kojima, M., and Waki, H. (2009a). Exploiting sparsity in SDP relaxation
for sensor network localization. SIAM Journal on Optimization, 20(1):192–215.
5, 98, 109, 110

Kim, S., Kojima, M., Waki, H., and Yamashita, M. (2008). User manual for SFSDP:
a Sparse version of Full SemiDefinite Programming relaxation for sensor network
localization problems. Technical report, Tokyo Institute of Technology. Revised
July 2009. 110

Kim, S., Kojima, M., Waki, H., and Yamashita, M. (2009b). SFSDP: a Sparse ver-
sion of Full SemiDefinite Programming relaxation for sensor network localization
problems. Technical report, Tokyo Institute of Technology. 5, 98, 109, 110, 113

Krislock, N. (2003). Numerical solution of semidefinite least squares problems.
Master’s thesis, University of British Columbia. 16

Krislock, N. and Wolkowicz, H. (2010). Explicit sensor network localization using
semidefinite representations and facial reductions. Technical report, University
of Waterloo. 5

Kumar, P. S. and Madhavan, C. V. (1998). Minimal vertex separators of chordal
graphs. Discrete Appl. Math., 89:155–168. 38, 39

Laurent, M. (1998). A tour d’horizon on positive semidefinite and Euclidean dis-
tance matrix completion problems. In Topics in Semidefinite and Interior-Point
Methods, pages 51–76. Amer. Math. Soc. 4

129

Laurent, M. (2001). Polynomial instances of the positive semidefinite and Euclidean
distance matrix completion problems. SIAM Journal on Matrix Analysis and
Applications, 22(3):874–894. 3, 41

Leung, N.-H. Z. and Toh, K.-C. (2008). An SDP-based divide-and-conquer al-
gorithm for large scale noisy anchor-free graph realization. Technical report,
Department of Mathematics, National University of Singapore. 6

Li, X.-Y. (2008). Wireless Ad Hoc and Sensor Networks: Theory and Applications.
Cambridge University Press. 5

Megerian, S., Koushanfar, F., Potkonjak, M., and Srivastava, M. (2005). Worst and
best-case coverage in sensor networks. Mobile Computing, IEEE Transactions on,
4(1):84–92. 5

Mészáros, C. and Suhl, U. H. (2003). Advanced preprocessing techniques for linear
and quadratic programming. OR Spectrum, 25(4):575–595. 63

Moore, D., Leonard, J., Rus, D., and Teller, S. (2004). Robust distributed network
localization with noisy range measurements. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems, pages 50–
61, New York, NY, USA. ACM. 5

Moré, J. J. and Wu, Z. (1997). Global continuation for distance geometry problems.
SIAM Journal on Optimization, 7(3):814–836. 6

Moré, J. J. and Wu, Z. (1999). Distance geometry optimization for protein struc-
tures. Journal of Global Optimization, 15(3):219–234. 6

Muramatsu, M. (2005). A unified class of directly solvable semidefinite program-
ming problems. Ann. Oper. Res., 133:85–97. 88

Nawaz, S. (2008). Anchor Free Localization for Ad-hoc Wireless Sensor Networks.
PhD thesis, University of New South Wales. 5

Nesterov, Y. and Nemirovskii, A. (1994). Interior-point polynomial algorithms in
convex programming, volume 13 of SIAM Studies in Applied Mathematics. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. 2

Nie, J. (2009). Sum of squares method for sensor network localization. Computa-
tional Optimization and Applications, 43(2):151–179. 5

Pataki, G. (2000). A simple derivation of a facial reduction algorithm and extended
dual systems. Technical report, University of North Carolina at Chapel Hill. 4

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M.,
Meng, E. C., and Ferrin, T. E. (2004). UCSF Chimera – A visualization sys-
tem for exploratory research and analysis. Journal of Computational Chemistry,
25(13):1605–1612. 118

130

Poljak, S., Rendl, F., and Wolkowicz, H. (1995). A recipe for semidefinite relaxation
for (0,1)-quadratic programming. Journal of Global Optimization, 7(1):51–73. 42

Pong, T. and Tseng, P. (2010). (Robust) edge-based semidefinite programming
relaxation of sensor network localization. Mathematical Programming. Published
online. 5, 98, 109, 110, 113

Ramana, M. V., Tunçel, L., and Wolkowicz, H. (1997). Strong duality for semidef-
inite programming. SIAM Journal on Optimization, 7(3):641–662. 4, 16, 21, 35,
64

Recht, B., Fazel, M., and Parrilo, P. A. (2008a). Guaranteed minimum-rank so-
lutions of linear matrix equations via nuclear norm minimization. To appear in
SIAM Review. 4, 45

Recht, B., Xu, W., and Hassibi, B. (2008b). Necessary and sufficient conditions for
success of the nuclear norm heuristic for rank minimization. 4, 45

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press. 15, 16

Savvides, A., Han, C.-C., and Strivastava, M. B. (2001). Dynamic fine-grained
localization in ad-hoc networks of sensors. In MobiCom ’01: Proceedings of the
7th annual international conference on Mobile computing and networking, pages
166–179, New York, NY, USA. ACM. 5

Saxe, J. B. (1979). Embeddability of weighted graphs in k-space is strongly NP-
hard. In Proceedings of the 17th Allerton Conference on Communications, Con-
trol, and Computing, pages 480–489. 4, 40, 41

Schneider, R. (1993). Convex bodies: the Brunn-Minkowski theory. Cambridge
University Press. 4, 18

Schoenberg, I. J. (1935). Remarks to Maurice Fréchet’s article “Sur la définition ax-
iomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace
de Hilbert”. Ann. of Math. (2), 36(3):724–732. 1, 3, 25, 32

Schönemann, P. (1966). A generalized solution of the orthogonal Procrustes prob-
lem. Psychometrika, 31(1):1–10. 49

So, A. M.-C. (2007). A Semidefinite Programming Approach to the Graph Real-
ization Problem: Theory, Applications and Extensions. PhD thesis, Computer
Science Department, Stanford University. 4, 40

So, A. M.-C. and Ye, Y. (2006). A semidefinite programming approach to tensegrity
theory and realizability of graphs. In SODA ’06: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 766–775, New York,
NY, USA. ACM. 4

131

So, A. M.-C. and Ye, Y. (2007). Theory of semidefinite programming for sensor
network localization. Math. Program., 109(2-3, Ser. B):367–384. 4, 56

Stoyanova, T., Kerasiotis, F., Prayati, A., and Papadopoulos, G. (2009). Evaluation
of impact factors on RSS accuracy for localization and tracking applications in
sensor networks. Telecommunication Systems, 42(3-4, Sp. Iss. SI):235–248. 5

Tarazaga, P. (2005). Faces of the cone of Euclidean distance matrices: characteri-
zations, structure and induced geometry. Linear Algebra Appl., 408:1–13. 4

Tarazaga, P., Hayden, T. L., and Wells, J. (1996). Circum-Euclidean distance
matrices and faces. Linear Algebra Appl., 232:77–96. 4

Todd, M. J. (2001). Semidefinite optimization. Acta Numerica, 10:515–560. 2

Tseng, P. (2007). Second-order cone programming relaxation of sensor network
localization. SIAM Journal on Optimization, 18(1):156–185. 5, 98, 109

Tunçel, L. and Wolkowicz, H. (2008). Strong duality and minimal representations
for cone optimization. Technical report, University of Waterloo. 35

Tunçel, L. (2001). On the Slater condition for the SDP relaxations of nonconvex
sets. Oper. Res. Lett., 29(4):181–186. 64

Vandenberghe, L. and Boyd, S. (1996). Semidefinite programming. SIAM Review,
38(1):49–95. 2

Vanderbei, R. J. and Yang, B. (1995). The simplest semidefinite programs are
trivial. Math. Oper. Res., 20(3):590–596. 88

Waki, H. and Muramatsu, M. (2009a). A facial reduction algorithm for find-
ing sparse SOS representations. Technical Report CS-09-02, The University of
Electro-Communications. 4

Waki, H. and Muramatsu, M. (2009b). Facial reduction algorithms for conic op-
timization problems. Technical Report CS-09-01, The University of Electro-
Communications. 4

Wang, Z., Zheng, S., Ye, Y., and Boyd, S. (2008). Further relaxations of the semidef-
inite programming approach to sensor network localization. SIAM Journal on
Optimization, 19(2):655–673. 5, 98, 109, 110

Weinberger, K. Q., Sha, F., and Saul, L. K. (2004). Learning a kernel matrix for
nonlinear dimensionality reduction. In ICML ’04: Proceedings of the twenty-first
international conference on Machine learning, page 106, New York, NY, USA.
ACM. 44, 45, 62, 120

Wolkowicz, H. (1996). Explicit solutions for interval semidefinite linear programs.
Linear Algebra Appl., 236:95–104. 88

132

Wu, D. and Wu, Z. (2007). An updated geometric build-up algorithm for solving
the molecular distance geometry problems with sparse distance data. Journal of
Global Optimization, 37(4):661–673. 6

Wu, D., Wu, Z., and Yuan, Y. (2008). Rigid versus unique determination of protein
structures with geometric buildup. Optimization Letters, 2(3):319–331. 6

Yang, Z., Liu, Y., and Li, X.-Y. (2009). Beyond trilateration: On the localizability
of wireless ad-hoc networks. In INFOCOM 2009, IEEE, pages 2392–2400. 5

Yemini, Y. (1979). Some theoretical aspects of position-location problems. In
20th Annual Symposium on Foundations of Computer Science (San Juan, Puerto
Rico, 1979), pages 1–8. IEEE, New York. 4, 40

Young, G. and Householder, A. (1938). Discussion of a set of points in terms of
their mutual distances. Psychometrika, 3(1):19–22. 3, 25

Yuen, A. K. L., Lafon, O., Charpentier, T., Roy, M., Brunet, F., Berthault,
P., Sakellariou, D., Robert, B., Rimsky, S., Pillon, F., Cintrat, J.-C., and
Rousseau, B. (2010). Measurement of long-range interatomic distances by solid-
state tritium-NMR spectroscopy. Journal of the American Chemical Society,
132(6):1734–1735. 60, 114

Zhao, Q., Karisch, S. E., Rendl, F., and Wolkowicz, H. (1998). Semidefinite pro-
gramming relaxations for the quadratic assignment problem. Journal of Combi-
natorial Optimization, 2(1):71–109. 4

133

Index

(En)∗, dual cone of En, 36
A[:, T], submatrix of A, 9
A[S, :], submatrix of A, 9
A[S, T], submatrix of A, 9
A[S], principal submatrix of A, 9
A†, Moore-Penrose pseudoinverse, 10
E, edge set, 37
G = (N,E, ω), graph, 37
H, adjacency matrix, 37
J , orthogonal projector onto {e}⊥, 28
N , node set, 37
B, unit ball, 14
De, 26
D∗e , 27
Dv, 67
En, Euclidean distance matrices, 24
K, 25
K∗, 27
K†, 29
KV , 44
N (j), neighbours of node j, 75
Rn, real n-vectors, 8
Rn

+, nonnegative orthant, 16
Rn

++, positive orthant, 16
Rm×n, real m-by-n matrices, 8
T , 28
aff(S), affine hull of S, 14
◦, Hadamard product, 37
core(S), core of a set S, 15
embdim, embedding dimension, 24
face(S), minimal face containing a set S,

17
〈 · , · 〉, inner product, 8
‖ · ‖2, Euclidean norm, 8
‖ · ‖F , Frobenius norm, 8
null(A), null space of A, 9
offDiag, 28

ω ∈ RE
+, edge weights, 37

range(A), range space of A, 9
rank(A), rank of A, 9
relcore(S), relative core of a set S, 15
Sn, real symmetric matrices, 8
Sn+, positive semidefinite matrices, 16
SnC , centred matrices, 27
SnH , hollow matrices, 25
Sn++, positive definite matrices, 16
σ, noise factor, 108
e, vector of all ones, 25
r-realization, 39

adjacency matrix, 37
adjoint, 9

self-adjoint, 9
affine

set, 14
affine hull, 14
anchors, 47
average degree, 99

ball
unit, 14

Biswas-Ye SNL semidefinite relaxation,
54–55

centred matrix, 27
chord, 38
chordal, 38
cone, 15

dual, 15
facially exposed, 16
nice, 35
self-dual, 15

congruent, 39
convex

function, 14

134

set, 14
core, 15

relative, 15

degree, 98
density, 99
distance matrix, 1

EDM, see Euclidean distance matrix
EDMC problem, see Euclidean distance

matrix completion problem
embedding dimension, 24
Euclidean

distance matrix, 24
completion problem, 37
partial, 37

space, 8
Euclidean distance matrix, 1
Euclidean norm, 1

face, 16
conjugate, 16
exposed, 16
minimal, 17

framework, 39
equivalent, 39

globally rigid, 40
Gram matrix, 25
graph

weighted undirected, 37

hollow, 25

inner product, 8

Löwner partial order, 16
level k non-rigid intersection, 84
linear optimization, 62
LO, see linear optimization

Max Error, 103
maximum cardinality search, 39
maximum log-likelihood, 109
minimal vertex seperator, 38
Moore-Penrose pseudoinverse, 10

neighbours, 75

noise factor, 108
noise model

multiplicative, 108
non-rigid intersection, 80
norm

Euclidean, 8
Frobenius, 8

normal equations, 13
nuclear norm, 45, 46
null space, 9

orthant
nonnegative, 16
positive, 16

positive
definite, 15
semidefinite, 15

Procrustes problem, 49
projection, 10
pseudoinverse

Moore-Penrose, 10

range space, 9
rank, 9
rank minimization, 46
relative interior, 15
rigid intersection, 75
RMSD, see root mean square deviation
root mean square deviation, 103

Schur complement, 54
SDO, see semidefinite optimization
semidefinite optimization, 64
sensor network localization, 47
sensors, 47
singular value decomposition, 10
SNL, see sensor network localization
spectral radius, 32
submatrix, 9
support, 63
symmetric matrices, 8

uniquely
localizable, 55

unit disk graphs, 41
universally rigid, 40

135

	List of Tables
	List of Figures
	Introduction
	Related work
	Distance geometry and Euclidean distance matrices
	Graph realization and graph rigidity
	Facial reduction
	Sensor network localization
	Molecular conformation

	Contributions of this thesis

	Faces and Euclidean Distance Matrices
	Euclidean spaces
	Linear maps
	The adjoint and the fundamental subspaces
	Orthogonal projections
	The Moore-Penrose pseudoinverse

	Convexity and topology
	Cones and faces
	Faces of convex cones
	A face of the semidefinite cone
	Semidefinite facial representation theorem
	A theorem of the alternative for semidefinite optimization and the minimal face

	Euclidean distance matrices
	Properties of K
	The cone of Euclidean distance matrices is closed
	The dual cone of the Euclidean distance matrix cone

	The Euclidean distance matrix completion problem
	The low-dimensional EDM completion problem
	Chordal EDM completions
	Graph realization and graph rigidity
	Low-dimensional EDM completion is NP-hard
	Semidefinite relaxation of the low-dimensional EDM completion problem
	Duality of the semidefinite relaxation
	Rank minimization heuristics for the EDM completion problem

	Applications of Euclidean Distance Matrices
	Sensor network localization
	Anchors and the Procrustes problem
	Semidefinite relaxation of the SNL problem
	Further transformations of the semidefinite relaxation of the SNL problem
	The Biswas-Ye formulation
	Unique localizability
	Obtaining sensor positions from the semidefinite relaxation

	Molecular conformation

	Facial Reduction for the Euclidean Distance Matrix Completion Problem
	Facial reduction in linear optimization
	Facial reduction in semidefinite optimization
	Single clique facial reduction
	An alternate proof

	Facial reduction algorithm overview
	Facial reduction algorithm for a fixed embedding dimension

	Single subset facial reduction
	Disjoint subsets facial reduction
	Rigid intersection facial reduction
	Rigid face intersection
	Rigid intersection

	Non-rigid intersection facial reduction
	Non-rigid face intersection
	Non-rigid intersection

	Level k non-rigid intersection facial reduction
	Level k non-rigid face intersection
	Level k non-rigid intersection

	Constraint reduction
	Centring constraint reduction
	Euclidean distance matrix completion
	Distance constraint reduction

	A semidefinite facial reduction algorithm for Euclidean distance matrix completion
	Point representation
	Point rotation and subspace intersection

	A point representation algorithm for Euclidean distance matrix completion

	Numerical Results
	Sensor network localization
	Random problems
	The SNLSDPclique facial reduction algorithm
	Numerical tests
	Noisy data and higher dimensional problems
	Comparison with existing algorithms

	Molecular conformation tests

	Conclusions and Future Work
	Future work

	References
	Index

