2,512 research outputs found

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Non-locality and Communication Complexity

    Get PDF
    Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. In this review we study the information counterpart of computing. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.Comment: Survey paper, 63 pages LaTeX. A reformatted version will appear in Reviews of Modern Physic

    Hybrid Beamforming via the Kronecker Decomposition for the Millimeter-Wave Massive MIMO Systems

    Get PDF
    Despite its promising performance gain, the realization of mmWave massive MIMO still faces several practical challenges. In particular, implementing massive MIMO in the digital domain requires hundreds of RF chains matching the number of antennas. Furthermore, designing these components to operate at the mmWave frequencies is challenging and costly. These motivated the recent development of hybrid-beamforming where MIMO processing is divided for separate implementation in the analog and digital domains, called the analog and digital beamforming, respectively. Analog beamforming using a phase array introduces uni-modulus constraints on the beamforming coefficients, rendering the conventional MIMO techniques unsuitable and call for new designs. In this paper, we present a systematic design framework for hybrid beamforming for multi-cell multiuser massive MIMO systems over mmWave channels characterized by sparse propagation paths. The framework relies on the decomposition of analog beamforming vectors and path observation vectors into Kronecker products of factors being uni-modulus vectors. Exploiting properties of Kronecker mixed products, different factors of the analog beamformer are designed for either nulling interference paths or coherently combining data paths. Furthermore, a channel estimation scheme is designed for enabling the proposed hybrid beamforming. The scheme estimates the AoA of data and interference paths by analog beam scanning and data-path gains by analog beam steering. The performance of the channel estimation scheme is analyzed. In particular, the AoA spectrum resulting from beam scanning, which displays the magnitude distribution of paths over the AoA range, is derived in closed-form. It is shown that the inter-cell interference level diminishes inversely with the array size, the square root of pilot sequence length and the spatial separation between paths.Comment: Submitted to IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Networks, minor revisio

    Strengths and Weaknesses of Quantum Fingerprinting

    Full text link
    We study the power of quantum fingerprints in the simultaneous message passing (SMP) setting of communication complexity. Yao recently showed how to simulate, with exponential overhead, classical shared-randomness SMP protocols by means of quantum SMP protocols without shared randomness (QQ^\parallel-protocols). Our first result is to extend Yao's simulation to the strongest possible model: every many-round quantum protocol with unlimited shared entanglement can be simulated, with exponential overhead, by QQ^\parallel-protocols. We apply our technique to obtain an efficient QQ^\parallel-protocol for a function which cannot be efficiently solved through more restricted simulations. Second, we tightly characterize the power of the quantum fingerprinting technique by making a connection to arrangements of homogeneous halfspaces with maximal margin. These arrangements have been well studied in computational learning theory, and we use some strong results obtained in this area to exhibit weaknesses of quantum fingerprinting. In particular, this implies that for almost all functions, quantum fingerprinting protocols are exponentially worse than classical deterministic SMP protocols.Comment: 13 pages, no figures, to appear in CCC'0
    corecore