4,549 research outputs found

    A Survey of Multimodal Information Fusion for Smart Healthcare: Mapping the Journey from Data to Wisdom

    Full text link
    Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data to information to knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. We present a comprehensive review of multimodal medical data fusion focused on the integration of various data modalities. The review explores different approaches such as feature selection, rule-based systems, machine learning, deep learning, and natural language processing, for fusing and analyzing multimodal data. This paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and theories, it proposes a generic framework for multimodal medical data fusion that aligns with the DIKW model. Moreover, it discusses future directions related to the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches. The components of the comprehensive survey presented in this paper form the foundation for more successful implementation of multimodal fusion in smart healthcare. Our findings can guide researchers and practitioners in leveraging the power of multimodal fusion with the state-of-the-art approaches to revolutionize healthcare and improve patient outcomes.Comment: This work has been submitted to the ELSEVIER for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis

    Get PDF
    In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery

    Integrative AI-Driven Strategies for Advancing Precision Medicine in Infectious Diseases and Beyond: A Novel Multidisciplinary Approach

    Full text link
    Precision medicine, tailored to individual patients based on their genetics, environment, and lifestyle, shows promise in managing complex diseases like infections. Integrating artificial intelligence (AI) into precision medicine can revolutionize disease management. This paper introduces a novel approach using AI to advance precision medicine in infectious diseases and beyond. It integrates diverse fields, analyzing patients' profiles using genomics, proteomics, microbiomics, and clinical data. AI algorithms process vast data, providing insights for precise diagnosis, treatment, and prognosis. AI-driven predictive modeling empowers healthcare providers to make personalized and effective interventions. Collaboration among experts from different domains refines AI models and ensures ethical and robust applications. Beyond infections, this AI-driven approach can benefit other complex diseases. Precision medicine powered by AI has the potential to transform healthcare into a proactive, patient-centric model. Research is needed to address privacy, regulations, and AI integration into clinical workflows. Collaboration among researchers, healthcare institutions, and policymakers is crucial in harnessing AI-driven strategies for advancing precision medicine and improving patient outcomes

    Ensuring sample quality for biomarker discovery studies - Use of ict tools to trace biosample life-cycle

    Get PDF
    The growing demand of personalized medicine marked the transition from an empirical medicine to a molecular one, aimed at predicting safer and more effective medical treatment for every patient, while minimizing adverse effects. This passage has emphasized the importance of biomarker discovery studies, and has led sample availability to assume a crucial role in biomedical research. Accordingly, a great interest in Biological Bank science has grown concomitantly. In biobanks, biological material and its accompanying data are collected, handled and stored in accordance with standard operating procedures (SOPs) and existing legislation. Sample quality is ensured by adherence to SOPs and sample whole life-cycle can be recorded by innovative tracking systems employing information technology (IT) tools for monitoring storage conditions and characterization of vast amount of data. All the above will ensure proper sample exchangeability among research facilities and will represent the starting point of all future personalized medicine-based clinical trials

    Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond

    Full text link
    In the past decade, the deployment of deep learning (Artificial Intelligence (AI)) methods has become pervasive across a spectrum of real-world applications, often in safety-critical contexts. This comprehensive research article rigorously investigates the ethical dimensions intricately linked to the rapid evolution of AI technologies, with a particular focus on the healthcare domain. Delving deeply, it explores a multitude of facets including transparency, adept data management, human oversight, educational imperatives, and international collaboration within the realm of AI advancement. Central to this article is the proposition of a conscientious AI framework, meticulously crafted to accentuate values of transparency, equity, answerability, and a human-centric orientation. The second contribution of the article is the in-depth and thorough discussion of the limitations inherent to AI systems. It astutely identifies potential biases and the intricate challenges of navigating multifaceted contexts. Lastly, the article unequivocally accentuates the pressing need for globally standardized AI ethics principles and frameworks. Simultaneously, it aptly illustrates the adaptability of the ethical framework proposed herein, positioned skillfully to surmount emergent challenges

    Ethics and Nanopharmacy: Value Sensitive Design of New Drugs

    Get PDF
    Although applications are being developed and have reached the market, nanopharmacy to date is generally still conceived as an emerging technology. Its concept is ill-defined. Nanopharmacy can also be construed as a converging technology, which combines features of multiple technologies, ranging from nanotechnology to medicine and ICT. It is still debated whether its features give rise to new ethical issues or that issues associated with nanopharma are merely an extension of existing issues in the underlying fields. We argue here that, regardless of the alleged newness of the ethical issues involved, developments occasioned by technological advances affect the roles played by stakeholders in the field of nanopharmacy to such an extent that this calls for a different approach to responsible innovation in this field. Specific features associated with nanopharmacy itself and features introduced to the associated converging technologies- bring about a shift in the roles of stakeholders that call for a different approach to responsibility. We suggest that Value Sensitive Design is a suitable framework to involve stakeholders in addressing moral issues responsibly at an early stage of development of new nanopharmaceuticals

    The AI Ethics Principle of Autonomy in Health Recommender Systems

    Get PDF
    The application of health recommender systems (HRSs) in the mobile-health (m-health) industry, especially for healthy active aging, has grown exponentially over the past decade. However, no research has been conducted on the ethical implications of HRSs and the ethical principles for their design. This paper aims to fill this gap and claims that an ethically informed re-definition of the AI ethics principle of autonomy is needed to design HRSs that adequately operationalize (that is, respect and promote) individuals’ autonomy over ageing. To achieve this goal, after having clarified the state-of-the-art on HRSs, I present the reasons underlying the need to focus on autonomy as a prominent ethical issue and principle for the design of HRSs. Then, I pursue an inquiry on autonomy in HRSs and show that HRSs can both promote individuals’ autonomy and undermine it, also leading to phenomena of passive ageing. In particular, I claim that this is also due to the concept of autonomy underlying the debate on HRSs-based m-health, which is sometimes misleading, as it mainly coincides with informational self-determination. Using ethical reasoning, I shed light on a more complex account of autonomy and I redefine the AI ethics principle of autonomy accordingly. I show that autonomy and informational self-determination do not overlap. I also show that autonomy encompasses also a socio-relational dimension and that it requires both authenticity conditions and social recognition conditions. Finally, I analyze the implications of my ethical redefinition of autonomy for the design of autonomy-enabling HRSs for healthy active ageing
    • …
    corecore