7 research outputs found

    Wavelet-based voice morphing

    Get PDF
    This paper presents a new multi-scale voice morphing algorithm. This algorithm enables a user to transform one person's speech pattern into another person's pattern with distinct characteristics, giving it a new identity, while preserving the original content. The voice morphing algorithm performs the morphing at different subbands by using the theory of wavelets and models the spectral conversion using the theory of Radial Basis Function Neural Networks. The results obtained on the TIMIT speech database demonstrate effective transformation of the speaker identity

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Identification of Transient Speech Using Wavelet Transforms

    Get PDF
    It is generally believed that abrupt stimulus changes, which in speech may be time-varying frequency edges associated with consonants, transitions between consonants and vowels and transitions within vowels are critical to the perception of speech by humans and for speech recognition by machines. Noise affects speech transitions more than it affects quasi-steady-state speech. I believe that identifying and selectively amplifying speech transitions may enhance the intelligibility of speech in noisy conditions. The purpose of this study is to evaluate the use of wavelet transforms to identify speech transitions. Using wavelet transforms may be computationally efficient and allow for real-time applications. The discrete wavelet transform (DWT), stationary wavelet transform (SWT) and wavelet packets (WP) are evaluated. Wavelet analysis is combined with variable frame rate processing to improve the identification process. Variable frame rate can identify time segments when speech feature vectors are changing rapidly and when they are relatively stationary. Energy profiles for words, which show the energy in each node of a speech signal decomposed using wavelets, are used to identify nodes that include predominately transient information and nodes that include predominately quasi-steady-state information, and these are used to synthesize transient and quasi-steady-state speech components. These speech components are estimates of the tonal and nontonal speech components, which Yoo et al identified using time-varying band-pass filters. Comparison of spectra, a listening test and mean-squared-errors between the transient components synthesized using wavelets and Yoo's nontonal components indicated that wavelet packets identified the best estimates of Yoo's components. An algorithm that incorporates variable frame rate analysis into wavelet packet analysis is proposed. The development of this algorithm involves the processes of choosing a wavelet function and a decomposition level to be used. The algorithm itself has 4 steps: wavelet packet decomposition; classification of terminal nodes; incorporation of variable frame rate processing; synthesis of speech components. Combining wavelet analysis with variable frame rate analysis provides the best estimates of Yoo's speech components

    Estimation of speech embedded in a reverberant and noisy environment by independent component analysis and wavelets

    No full text

    Source Separation for Hearing Aid Applications

    Get PDF

    Rehaussement d'un signal de la parole altéré par un bruit convolutif et additif à l'aide de la transformée en ondelettes

    Get PDF
    Cette étude porte sur la conception et la simulation d'un système de rehaussement de la parole avec bruits convolutifs et additifs, à l'aide de la transformée en ondelettes dans le but de l'appliquer sur un processeur dédié au traitement numérique du signal. La littérature existante a été étudiée. Le choix s'est porté sur une méthode adaptée et modifiée à nos besoins pour estimer la parole entachée de bruits additifs et convolutifs à l'aide l'analyse en composantes indépendantes avec utilisation de la transformée en ondelettes. La simulation s'est faite sous MATLAB. Sa mise en oeuvre a été réalisée en langage C
    corecore