6 research outputs found

    Enumeration, conformation sampling and population of libraries of peptide macrocycles for the search of chemotherapeutic cardioprotection agents

    Get PDF
    Peptides are uniquely endowed with features that allow them to perturb previously difficult to drug biomolecular targets. Peptide macrocycles in particular have seen a flurry of recent interest due to their enhanced bioavailability, tunability and specificity. Although these properties make them attractive hit-candidates in early stage drug discovery, knowing which peptides to pursue is non‐trivial due to the magnitude of the peptide sequence space. Computational screening approaches show promise in their ability to address the size of this search space but suffer from their inability to accurately interrogate the conformational landscape of peptide macrocycles. We developed an in‐silico compound enumerator that was tasked with populating a conformationally laden peptide virtual library. This library was then used in the search for cardio‐protective agents (that may be administered, reducing tissue damage during reperfusion after ischemia (heart attacks)). Our enumerator successfully generated a library of 15.2 billion compounds, requiring the use of compression algorithms, conformational sampling protocols and management of aggregated compute resources in the context of a local cluster. In the absence of experimental biophysical data, we performed biased sampling during alchemical molecular dynamics simulations in order to observe cyclophilin‐D perturbation by cyclosporine A and its mitochondrial targeted analogue. Reliable intermediate state averaging through a WHAM analysis of the biased dynamic pulling simulations confirmed that the cardio‐protective activity of cyclosporine A was due to its mitochondrial targeting. Paralleltempered solution molecular dynamics in combination with efficient clustering isolated the essential dynamics of a cyclic peptide scaffold. The rapid enumeration of skeletons from these essential dynamics gave rise to a conformation laden virtual library of all the 15.2 Billion unique cyclic peptides (given the limits on peptide sequence imposed). Analysis of this library showed the exact extent of physicochemical properties covered, relative to the bare scaffold precursor. Molecular docking of a subset of the virtual library against cyclophilin‐D showed significant improvements in affinity to the target (relative to cyclosporine A). The conformation laden virtual library, accessed by our methodology, provided derivatives that were able to make many interactions per peptide with the cyclophilin‐D target. Machine learning methods showed promise in the training of Support Vector Machines for synthetic feasibility prediction for this library. The synergy between enumeration and conformational sampling greatly improves the performance of this library during virtual screening, even when only a subset is used

    Computational Modeling of Protein Structure, Function, and Binding Hotspots

    Full text link
    Mixed-solvent molecular dynamics (MixMD) is a cosolvent mapping technique for structure-based drug design. MixMD simulations are performed with a solvent mixture of small molecule probes and water, which directly compete for binding to the protein’s surface. MixMD has previously been shown to identify active and allosteric sites based on the time-averaged occupancy of the probe molecules over the course of the simulation. Sites with the highest maximal occupancy identified known biologically relevant sites for a wide range of targets. This is consistent with previous experimental work identifying hotspots on protein surfaces based on the occupancy of multiple organic-solvent molecules. However, previous MixMD analysis required extensive manual interpretation to identify and rank sites. MixMD Probeview was introduced to automate this analysis, thereby facilitating the application of MixMD. Implemented as a plugin for the freely available, open-source version of PyMOL, MixMD Probeview successfully identified binding sites for several test systems using three different cosolvent simulation procedures. Following identification of binding sites, the occupancy maps from the MixMD simulations can be converted into pharmacophore models for prospective screening of inhibitors. We have developed a pharmacophore generation procedure to convert MixMD occupancy maps into pharmacophore models. Validation of this procedure on ABL kinase showed good performance. Additionally, we have identified characteristic occupancy levels for non-displaceable water molecules so that these sites may be incorporated into structure-based drug design efforts. Lastly, we have explored the potential for accelerated sampling methods to be used in tandem with MixMD to simultaneously capture conformational changes while mapping favorable interactions within binding sites. These developments greatly extend the utility of MixMD while also simplifying its application. In addition, two exploratory studies were completed. First, traditional MD simulations were performed to understand the dynamics of NSD1. Crystal structures of NSD1 capture the post-SET loop in an autoinhibitory position. MD simulations allow conformational sampling of this loop, yielding insight into its dynamic behavior in solution. Second, an epidemiological study was conducted which was aimed at understanding the transmission and sequence variation of CTX-M-type β-lactamases, in fulfillment of the clinical research component of the MICHR Translational Research Education Certificate.PHDBiophysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138744/1/sarahgra_1.pd
    corecore