2 research outputs found

    Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series

    Get PDF
    Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales

    Estimaci贸n del rendimiento de soja empleando informaci贸n satelital y modelos de simulaci贸n de cultivos

    Get PDF
    Tesis (Doctor en Ciencias Agropecuarias) -- UNC- Facultad de Ciencias Agropecuarias, 2019La estimaci贸n de la productividad de la soja es un dato estrat茅gico a nivel regional. Los modelos de cultivos proveen una descripci贸n continua del crecimiento y desarrollo del cultivo. La teledetecci贸n permite el monitoreo del crecimiento y desarrollo de la vegetaci贸n en un 谩rea determinada. El objetivo general de este estudio fue predecir par谩metros biof铆sicos del cultivo de soja, integrando datos de teledetecci贸n del sensor MODIS en el modelo de cultivo STICS. En diez lotes con soja de la regi贸n central de la provincia de C贸rdoba se realizaron observaciones de: 铆ndice de 谩rea foliar (LAI), fracci贸n de la radiaci贸n fotosint茅ticamente activa interceptada (fIPAR), cobertura del cultivo (%C), materia seca de la parte a茅rea (MS), fase fenol贸gica, contenido de agua del suelo (HS) y rendimiento. El modelo de transferencia radiativa PROSAIL se utiliz贸 para generar una base de datos que se invirti贸 empleando redes neuronales artificiales (ANN), con el fin de estimar LAI a partir de valores de reflectancias de MODIS. Se forz贸 al modelo STICS a tomar valores de LAI (STICS-f) y con ambos se simul贸 MS y rendimiento, como as铆 tambi茅n HS. Las reflectancias simuladas con PROSAIL mostraron la evoluci贸n t铆pica con el incremento del LAI: un aumento de la absorci贸n en azul y rojo e incremento en la reflectancia NIR. La ANN con mejor desempe帽o en la inversi贸n de PROSAIL consider贸 como datos de entrada solamente las reflectancias en azul, rojo y NIR para estimar el LAI. En la calibraci贸n de los coeficientes del cultivo del modelo STICS, se debi贸 considerar las diferentes fechas y densidades de siembra como as铆 tambi茅n la longitud del ciclo de las variedades utilizadas. Como era de esperar, al pasar del modelo STICS a STICS-f, los errores de estimaci贸n del LAI disminuyen (%RMSE de 29,2% a 12,2%), como as铆 tambi茅n los errores al estimar MS; sin embargo, resultaron elevados en comparaci贸n con la bibliograf铆a analizada. Cuando el an谩lisis considera solamente la materia seca vegetativa, los errores disminuyen considerablemente. El contenido de humedad del suelo hasta 2m de profundidad y el rendimiento, fueron estimados adecuadamente tanto con STICS como con STICS-f, cuyos valores de %RMSE estuvieron en torno a 10%.The estimation of soybean productivity is a strategic information at the regional level. While crop models provide a continuous description of crop growth, remote sensing also allows monitoring the growth and development of vegetation also for a given area. The general objective of this study was to predict biophysical parameters of soybean crop, integrating remote sensing data from the MODIS sensor with the STICS crop model. At central region of C贸rdoba province, observations were made, in ten plots with soybean: leaf area index (LAI), fraction of intercepted photosynthetically active radiation (fIPAR), crop coverage (% C), dry matter the aerial (MS), phenological stage, soil moisture content (HS) and yield. The radiative transfer model PROSAIL was used to generate a database that was inverted using artificial neural networks (ANN) to estimate LAI from MODIS reflectance values. The STICS model was forced to take LAI values (STICS-f), to estimate MS and yield, as well as HS. The simulated reflectances with PROSAIL showed the typical evolution with the increase of LAI: an increase for the absorption in blue and red bands and an increase in the NIR reflectance. Only data of the reflectance in blue, red and NIR were used as input in the ANN with better performance in the inversion of PROSAIL to estimate LAI. In the calibration of STICS model, crop coefficients for the different sowing dates and densities as well as the cycle length of the varieties used should be considered. As expected, when changing from STICS to STICS-f model, the LAI estimation errors decrease (% RMSE from 29.2% to 12.2%), as well as errors in MS estimating; however, they were high in comparison with the literature analyzed. When considering vegetative dry matter, the errors decrease markedly. The moisture content of the soil up to 2m depth and the yield were properly estimated with both STICS and STICS- f, models, whose %RMSE values were around 10%
    corecore