835 research outputs found

    Parametric and Nonparametric Volatility Measurement

    Get PDF
    Volatility has been one of the most active areas of research in empirical finance and time series econometrics during the past decade. This chapter provides a unified continuous-time, frictionless, no-arbitrage framework for systematically categorizing the various volatility concepts, measurement procedures, and modeling procedures. We define three different volatility concepts: (i) the notional volatility corresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time. The parametric procedures rely on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directly observable variables, while the discrete- and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric procedures are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric procedures include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.

    Parametric and Nonparametric Volatility Measurement

    Get PDF
    Volatility has been one of the most active areas of research in empirical finance and time series econometrics during the past decade. This chapter provides a unified continuous-time, frictionless, no-arbitrage framework for systematically categorizing the various volatility concepts, measurement procedures, and modeling procedures. We define three different volatility concepts: (i) the notional volatility corresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time. The parametric procedures rely on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directly observable variables, while the discrete- and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric procedures are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric procedures include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.

    Testing for Volatility Changes in Grain Markets

    Get PDF
    We use newly nonparametric volatility measures and break techniques to estimate common breaks across grain futures over the recent ten years. Our results show one structural change in realized volatilities occurred in 2006 for corn and in 2007 for soybean. But the date difference between them cannot be negligible. We disaggregate the realized volatilities into a continuous component and a jump part and found the source of structural beak in realized volatilities is from jumps.structural change, grain, volatility measures, Financial Economics,

    Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility

    Get PDF
    A rapidly growing literature has documented important improvements in volatility measurement and forecasting performance through the use of realized volatilities constructed from high frequency returns coupled with relatively simple reduced-form time series modeling procedures. Building on recent theoretical results from Barndorff-Nielsen and Shephard (2003c,d) for related bi-power variation measures involving the sum of high-frequency absolute returns, the present paper provides a practical framework for non-parametrically measuring the jump component in realized volatility measurements. Exploiting these ideas for a decade of high-frequency five-minute returns for the DM/$ exchange rate, the S&P500 market index, and the 30-year U.S. Treasury bond yield, we find the jump component of the price process to be distinctly less persistent than the continuous sample path component. Explicitly including the jump measure as an additional explanatory variable in an easy-to implement reduced form model for realized volatility results in highly significant jump coefficient estimates at the daily, weekly and quarterly forecast horizons.Continuous-time methods, jumps, quadratic variation, realized volatility, bi-power variation, high-frequency data, volatility forecasting, HAR-RV model

    A framework for exploring the macroeconomic determinants of systematic risk

    Get PDF
    We selectively survey, unify and extend the literature on realized volatility of financial asset returns. Rather than focusing exclusively on characterizing the properties of realized volatility, we progress by examining economically interesting functions of realized volatility, namely realized betas for equity portfolios, relating them both to their underlying realized variance and covariance parts and to underlying macroeconomic fundamentals

    Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility

    Get PDF
    A rapidly growing literature has documented important improvements in volatility measurement and forecasting performance through the use of realized volatilities constructed from high-frequency returns coupled with relatively simple reduced-form time series modeling procedures. Building on recent theoretical results from Barndorff-Nielsen and Shephard (2003c,d) for related bi-power variation measures involving the sum of high-frequency absolute returns, the present paper provides a practical framework for non-parametrically measuring the jump component in realized volatility measurements. Exploiting these ideas for a decade of high-frequency five-minute returns for the DM/$ exchange rate, the S&P500 market index, and the 30-year U.S. Treasury bond yield, we find the jump component of the price process to be distinctly less persistent than the continuous sample path component. Explicitly including the jump measure as an additional explanatory variable in an easy-to-implement reduced form model for realized volatility results in highly significant jump coefficient estimates at the daily, weekly and quarterly forecast horizons. As such, our results hold promise for improved financial asset allocation, risk management, and derivatives pricing, by separate modeling, forecasting and pricing of the continuous and jump components of total return variability.Continuous-time methods, jumps, quadratic variation, realized volatility, bi-power variation, high-frequency data, volatility forecasting, HAR-RV model

    The Distribution of Exchange Rate Volatility

    Get PDF
    Using high-frequency data on Deutschemark and Yen returns against the dollar, we construct model-free estimates of daily exchange rate volatility and correlation, covering an entire decade. In addition to being model-free, our estimates are also approximately free of measurement error under general conditions, which we delineate. Hence, for all practical purposes, we can treat the exchange rate volatilities and correlations as observed rather than latent. We do so, and we characterize their joint distribution, both unconditionally and conditionally. Noteworthy results include a simple normality-inducing volatility transformation, high contemporaneous correlation across volatilities, high correlation between correlation and volatilities, pronounced and highly persistent temporal variation in both volatilities and correlation, clear evidence of long-memory dynamics in both volatilities and correlation, and remarkably precise scaling laws under temporal aggregation.

    A Framework for Exploring the Macroeconomic Determinants of Systematic Risk

    Get PDF
    We selectively survey, unify and extend the literature on realized volatility of financial asset returns. Rather than focusing exclusively on characterizing the properties of realized volatility, we progress by examining economically interesting functions of realized volatility, namely realized betas for equity portfolios, relating them both to their underlying realized variance and covariance parts and to underlying macroeconomic fundamentals.Realized volatility, realized beta, conditional CAPM, business cycle
    corecore