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1. Introduction 

The dramatic rise in grain prices that occurred in 2007 began an unprecedented level of volatility 

in grain markets. For example, corn prices before 2007 fluctuated within a range of $0.5 per 

bushel around an average price in the low $2 range. However, they swung within a range of $2 

per bushel around $5 per bushel in the 2007-2008 commodity boom. Increased price volatility 

results in greater costs for managing risks, such as more costly crop insurance premiums, higher 

option premiums, and higher hedging costs. In 2010 grain markets witnessed increases in 

volatility again. It adds to concern on price risk for stakeholders in grain markets so that 

regulators of the futures market are prompted to consider regulations on positions and trading 

limits. But, before appropriate policies are recommended to deal with consequences of the 

dramatic price swing, it is necessary to seek answers to many questions: Is the volatility change 

permanent or transitory? Is the change timing simultaneous across grain sectors? What are 

sources of the volatility change?  

 This study attempts to answer these questions.  We investigate the nature of the change in 

the variability of grain prices by testing for the existence of structural changes in daily volatilities 

for two selected grain futures (corn and soybean) over the period 2001-2010. Traditionally 

volatility is treated as a latent variable as is the case in ARCH and stochastic volatility models. 

However, volatility becomes observable due to a flurry of recent research on the use of high 

frequency data for measuring volatility (e.g. Andersen, Bollerslev, Diebold, and Labys, 2001, 

among others). This measure, called realized volatility (RV), is constructed from the sum of 

intraday squared returns and provides an accurate estimate of the unobserved volatility. 

Therefore we investigate the evidence for structural changes in reduced form time series models 

of RV. We use the heterogeneous autoregressive (HAR) model proposed by Corsi (2004) to 



capture the strong serial dependence in RV series. We consider a logarithmic version of the HAR 

similar to that implemented by Liu and Maheu (2008). Three factors are postulated to affect 

volatility: daily log-volatility, weekly log-volatility, and monthly log-volatility.
1
 We test for 

structural changes for individual commodity using the Bai and Perron (2006) method. This 

method uses an F test and is robust to serial correlation, heteroskedasticity, and differently 

distributed residuals across regimes (Bai and Perron, 2006). Importantly, the method treats the 

breaks as unknown, which means that break dates are estimated endogenously with other 

coefficients.  

 If the null hypothesis of no break is rejected in each grain, we further test for a common 

break in both commodities using Qu and Perron (2007) method. The common break is defined as 

at least one coefficient from each equation is significantly different across any two adjacent 

regimes resulted from the specified number of breaks. A likelihood ratio test is used to examine 

whether one statistically significant common break occurs. If the null hypothesis is rejected, Qu 

and Perron propose a sequential statistic to continue testing the exact number of breaks. The 

break dates are estimated by a quasi-maximum likelihood (QML) procedure. The distribution of 

break date estimates can be independent of the estimation and restrictions of other coefficients. 

To investigate sources of structural changes, we decompose the realized volatility into the 

continuous sample path volatility and the variation arising from the total daily jumps. The 

continuous component is estimated by a bipower variation measure developed by Barndorff-

Nielsen and Shephard (2006). We use the same framework for the realized volatility to model 

dynamic dependencies in the bipower variation and jumps.  A similar test procedure is applied to 

                                                           
1
 Liu and Maheu (2008) also took into account asymmetric effect in equity realized volatilities, but no such effect 

exits in commodity price dynamics.  



determine whether there is a coincidence of the break date for both its components. This 

disaggregation will identify sources of the realized volatility change. 

The rest of this paper is structured as follows. Section 2 presents the volatility relevant 

theory and measures. Section 3 discusses data descriptive statistics. Section 4 presents the 

models for realized volatility, bipower variation, and jump dynamics. Section 5 discusses the 

methodology of testing for breaks in individual and group commodities and estimating the 

number of breaks. Section 6 presents the test results and estimation. Section 7 contains some 

conclusions.  

 

2. Volatility Measures 

Let    denotes the logarithmic price of a grain futures. Assume that     follows a jump diffusion 

process (a semi-martingale process): 

(1)                               , 

where the mean process      denotes the drift term with a continuous and locally finite variation 

sample path;      denotes the instantaneous volatility;      is a Brownian Motion; and 

          is the pure jump part with time-varying intensity      and jump size     . The 

quadratic variation (   ) measures the volatility over the trading day  : 

(2)                
    

     
   , 

where                  denotes a sequence of partitions with                 

for    . Following the theory of quadratic variation, the total price variation at day   can be 

decomposed into its continuous component and a jump part: 

(3)                   
   

   

 

   
, 



where the first integrated volatility term represents the contribution from the continuous price 

path, while the second term accounts for the corresponding contribution to the    from jumps; 

and     gives the number of jumps over day  . 

The quadratic variation and its separate components are not observable. We make use of 

high-frequency data to construct their empirical volatility measures. Denotes the day  ,  th 

within-day return by: 

(4)       
    

 

 

  
    

   

 

,           

where M refers to the number of (equally spaced) return observations over the trading day  . A 

model-fee nonparametric measure, realized volatility, consistently estimates the quadratic 

variation: 

(5)          
  

   . 

Following equation (2), the realized volatility will converge uniformly in probability to the 

quadratic variation as the sampling frequency goes to infinity (Andersen, and Bollerslev, 1998; 

Barndorff-Nielsen and Shephard, 2002, among others): 

(6)       
   
       . 

In order to distinguish the continuous variation from the jump component, Barndorff-Nielsen and 

Shepard (2004) propose an empirical estimator, bipower variation, defined by: 

(7)     
 

 
               

 
    . 

Also, the bipower variation measure becomes immune to jumps and consistently estimates the 

integrated volatility with increasingly finely sample returns: 

(8)       
   
            

 

   
. 



Consequently, the difference between the realized volatility and the bipower variation 

consistently estimates the part of the quadratic variation due to jumps: 

(9)              
   
         

   
   . 

An empirically more robust measure proposed by Huang and Tauchen (2005) is the relative jump 

statistic: 

(10)                       

The    measure may be negative because of the finite values of M, although theoretically it is 

positive. Bolleslev et al. (2009) treated these ―measurement errors‖ as part of the    process while 

Andersen et al. (2007) adopted a certain threshold to identify only the significant jumps by a 

jump detection test statistic. We will follow Bollesleve et al. (2009) method to measure jump in 

order to avoid the arbitrary choice of any pre-specified significant level. 

 

3. Data 

Our data consist of five-minute price for corn and soybean futures contracts traded on the 

Chicago Board of Trade, ranging from Jan 2, 2001 to Apr 6, 2010. We calculate the realized 

volatility, bipower variation, and jump measures for most actively traded contracts in each period. 

We also exclude all overnight returns. The intraday five-minute prices span the time interval 

from 9:35 to 13:15, resulting in M=45 non-overlapping return observations per day. A five-

minute sampling frequency is often used in finance literature, since on the one hand it is 

desirable as finely sampled observations, on the other hand it is robust to contaminating market 

microstructure noise (Andersen, Bollerslev, and Huang, 2010).  

The resulting daily series for the logarithmic realized volatility and its two components 

are displayed in Figure 1, 2, and 3. The widely-documented volatility clustering effect is 



exhibited in each series. Also, the level of the logarithmic realized volatility exceeds that of the 

logarithmic bipower variation series. In turn, the jump series depicted in the last panel exhibits 

mostly positive values. It follows from Table 1 that the unconditional distributions of both the 

logarithmic continuous volatility measures are approximately normal. However, the descriptive 

statistics for the relative jump measure clearly indicate a positively skewed and leptokurtic 

distribution. Turning to the lower panel in the table, all of the volatility measures exhibit highly 

significant own serial dependencies, as evidenced by the Ljung-box test statistics for up to 20
th

 

order autocorrelation. It is consistent with the widely-documented long memory feature in the 

literature. Meanwhile, the relative jump measure also exhibits similar long-memory 

characteristics. In contrast, much less autocorrelation exists in S&P500 index time series.   

 

4. Model  

For modeling the dynamic dependencies in realized volatilities, we consider the heterogeneous 

autoregressive model (HAR) proposed by Coris (2004). The model provides a good 

approximation to the dynamics of long memory and is easy to estimate. The specific HAR-RV 

model adopted here takes the form: 

(11)                                                                        , 

where 

                
                                     

 
, 

                 
                                      

  
, 

and       for corn and soybean realized volatilities, respectively. This model postulates three 

factors that affect volatility: daily log-volatility, weekly log-volatility, and monthly log-volatility.  

We rely on the similar model to describe the dynamic dependencies in the          series.  



(12)                                                                         . 

The descriptive statistics point toward fairly strong own serial autocorrelations in the relative 

jump series. To best accommodate the feature in the model, we specify a HAR-J model: 

(13)                                           , 

where  

            
                         

 
, 

             
                          

  
. 

In the jump dynamics, the lagged jumps are generally insignificant. Other regressors, such as 

weekly and monthly log(BV), are also taken into account but omitted from the model due to the 

insignificance. Finally, the Ljung-box Q-statistics for all absolute residuals reveal no significant 

auto-correlations. 
2
 

 

5.  Estimation and Test 

We follow a setup in the Bai and Perron methodology to test for existence, number, and timing 

of the breaks in individual commodity realized volatility time series. The procedure is as follows. 

We estimate the linear equations for different sets of intercepts and slopes corresponding to 

different combinations of break points. The break date is pin down by obtaining global 

minimizers of the sum of squared residuals. An F-test is constructed to examine if there is a 

statistically significant break. If the null hypothesis of no break is rejected, we continue to 

determine the exact number and their location by the so-called sequential method. The method 

                                                           
2
 But the Ljung-Box Q-statistics for the squared realized volatility and bipower variation residuals reveal clear 

evidence for significant conditional heteroskedasticity. We didn’t augment the basic model with a GARCH error 

structure for the time-varying volatility of volatility, since on the one hand coefficient estimates are only limitedly 

improved, on the other hand in the break test, whether Bai and Perron test or Qu and Perron test, are robust to 

heteroskedasticity.  



adds one break each time the F-test is significant. The detailed theory on estimating and testing a 

single equation with multiple structural changes can be found in Bai and Perron (1998). Bai and 

Perron (2003) demonstrated the empirical application of the procedures. More statement will be 

placed on the Qu and Perron method, which proposed a general framework to test structural 

changes in multivariate regressions. Furthermore, it has not yet been applied too much. In fact, 

our study is one of the empirical applications of it.
3
  

To test the common break in grouped realized volatilities, we cast the model (11) into an 

alternative form proposed by Qu and Perron (2007): 

(14)         
        , 

where                         
 ,     is the set that includes the regressors from two 

equations. A subscript j indexes a regime (j=1,2,…,m+1) when the total number of common 

structural breaks in the system is m. We denote the break dates by the m vector             

and set that      and       . The matrix S is a selection matrix having dimension 14   

that involves elements with 0 or 1to specify which regressors appear in each equation.    has 

mean 0 and covariance matrix    for                           We define the     

matrix    by          
    so that (14) becomes 

(15)             

Qu and Perron (2007) applied a quasi-maximum likelihood method based on normal errors to 

estimate multiple structural changes that occur at unknown dates in a system of equations. This is 

a fairly general method with the following flexibilities: a) allowing changes in the coefficients of 

the conditional mean; b) allowing changes in the coefficients of the covariance matrix of the 

residuals; and c) allowing arbitrary restrictions on these parameters so that we can analyze not 

                                                           
3 We are also gateful to Jushan Bai, Pierre Perron, and Zhongjun Qu for making their GAUSS programs available. 



only common breaks that occur in all equations, but also breaks that occur in a subset of 

equations. Given the partition of the sample            , the system’s quasi-likelihood 

function is  

(16)                            
  

      
   
   , 

where         is a multivariate normal distribution. Thus the quasi-likelihood ratio is 

(17)     
                  

  
      

   
   

             
    

   
  
 

    
   

   
   

, 

where a 0 subscript denotes the true value of the parameters. Then the parameter estimates are to 

maximize a log-likelihood ratio with parameter restrictions: 

(18)                                                        , 

where              is a restriction on parameters.  

Qu and Perron (2007) have corroborated that the log-likelihood ratio optimization 

problem can be split into two asymptotically independent components so that the estimates of the 

break dates   and the coefficients (     are unaffected each other. Furthermore, the restrictions 

on parameters do not also affect the distribution of the break dates. Under the theorem, the 

limiting distribution of the estimates of the break dates are easily derived (See theorem 2 and 3 in 

Qu and Perron (2007)).  

To construct the QMLE, a general algorithm to the optimization problem (18) is a grid 

search, but it is no longer feasible in the computation of maximum likelihood estimate of order 

        Qu and Perron (2006) used a dynamic programming algorithm identical to Bai and 

Perron (2003). The main idea is to first calculate the overall value of the log-likelihood function 

for all possible segments, and then use this algorithm to assess which particular combination of 

m+1 segments leads to the highest likelihood value.  



After estimating the break dates by QMLE, a likelihood ratio statistic is constructed o test 

the null hypothesis with no change in any of the coefficients versus an alternative hypothesis 

with a pre-specified number of changes. The test statistic is 

(19)                                , 

where 

         
  

 
                       , 

and 

                     
  

 
            

       

 

   
             . 

A tilde subscript denotes the parameter estimates under the null hypothesis (no change in 

structure), while a delta subscript denotes the parameter estimates under the alternative 

hypothesis (m structural changes in the system). If no change occurs, the QMLE is equivalent to 

the generalized least squares estimate, and thus other coefficients can be estimated as  

         
    

  
    

  
     

    
 
   , 

   
 

 
       

  
            

     . 

The estimates can be obtained by beginning with the OLS of estimates of coefficients in the 

mean equation and iterate until convergence. Under the alternative hypothesis, the QMLE jointly 

solve the equations 

    
 

       
       

           
     

  

        , 

           
    

   

         
  

      
    

  

        . 

The estimates allow the structure change occurring in the conditional mean and the covariance 

matrix of the errors. The limiting distribution of the test statistic is derived by Qu and Perron 

(2007) and depends on the number of regressors whose coefficients are allowed to change, the 



number of coefficients of the covariance matrix allowed to change, and the distribution the errors. 

If the test rejects the null hypothesis, we can use a sequential test statistic, as in Bai and Perron 

(2003), to examine how many structure changes occur. The test is also based on the estimates of 

the break dates from a global maximization of the likelihood function. It is to test the null 

hypothesis of          breaks versus the alternative hypothesis of     breaks. The procedure 

is to perform a one break test for each of the (     segments defined by the partition           

and to assess whether the maximum of the tests is significant. It is defined by 

(20)               

                                                                   . 

Also, the limiting distribution of this test can be derived straightforwardly based on the 

distribution function of     . 

Finally, to test the source of structural change in realized volatilities, we decompose 

realized volatilities into a continuous component and a jump part. Qu and Perron (2006) 

methodology is again applied to partial structural change models where a subset of the equations 

does not change across regimes. We restrict all the coefficients in one equation unchanged to see 

if structural changes in the other are responsible for the break in realized volatilities. We don’t 

test for structural change using a single component time series. Instead, we group them to apply 

the similar procedure since even if no change occurs in one equation, the precision of the 

estimates on break dates and other coefficients can be increased due to the correlation between 

error terms of equations. The improvement of efficiency is similar to an SUR (seemingly 

unrelated regression) model for linear regressions opposed to OLS. Based on existing results in 

the stochastic volatility literature, the disturbances in continuous volatility and jump are 

correlated. For example, Bollereslev, et al. (2009) found the sample correlation for the estimated 



residuals from the Bipower variation and jump equations are -0.1847. Additionally, they also 

find there might exist nonlinear dependencies—a smirk-like relation between the innovations to 

the continuous volatility and jump components. Testing for a structural change in a system of 

equations because of interdependencies between disturbances would obviously improve 

estimation efficiency.  

 

6. Results 

First, we use the Bai and Perron (1998, 2003) method to estimate multiple breaks in individual 

grain commodity time series. At each step, according to the recommendation of Bai and Perron 

(2006), we test the null hypothesis of no breaks against an unknown number of breaks. If the null 

of no breaks is rejected, we use the sequential test to determine the number of and locations of 

breaks. Table 2 reports the test statistics and the 90% confidence interval for the break date 

estimates. Two interesting results are revealed from Table 2. Firstly, the      tests suggest that 

there is evidence of structural changes in the coefficients that govern the dynamics of realized 

volatilities for corn and soybean. We reject the null of no break in favor of the alternative of 

breaks. Secondly, the sequential tests suggest that only one structural change occurs in the 

soybean and corn volatilities. The break date for corn is estimated at Nov 18, 2006, while the 

date for soybean is estimated at one year later. Table 3 and 4 give other coefficient estimates for 

corn and soybean HAR models. The coefficient estimates show predictive ability of regressors 

has similar change for corn and soybean: in the second regime, weekly log-realized volatilities 

reduce its weight on the prediction while monthly log-realized volatilities increase its effect. This 

means in recent years long memory feature of these two commodities has become more 

prominent.  



Next, we test whether there is a common structural break between the corn and soybean 

realized volatilities using the Qu and Perron test in a system of two equations. That is, we see 

whether the difference of break dates for corn and soybean is negligible in statistics. This 

approach restricts the breaks to occurring at the same time in both equations and therefore can 

detect breaks in the ratio when they occur in the component series simultaneously but with 

different magnitudes. Our test results indicate that there is little evidence of a common structural 

change in the corn and soybean realized volatilities. The       test for 0 versus 1.000 break is 

18.486, while the 10% and 5% significance levels are 20.78 and 23.21. In short, there are no 

common structural changes between corn and soybean realized volatilities.  

To further investigate the source of realized volatilities in each commodity, we turn to the 

system of equations composed by the bipower variation and jump. We apply the same empirical 

methods as the case in the system of realized volatilities. Table 5 describes the test results. First 

we allow breaks in all the regression coefficients. The SupF test for the structural changes 

suggests one common structural change in corn bipower and jump time series. But the break date 

is prior to the date found in the single realized volatility series. The break date estimate is Feb 8, 

2006, and the 90 percent confidence interval is Dec 7, 2005 to April 10, 2006. There is no 

evidence of a second structural break in the system. As for soybean, there is evidence of 

structural change. Furthermore, the break date estimate is almost exactly same as the case in the 

soybean realized volatilities. In order to check the timing of the structural break simultaneous 

across components, we restrict coefficients in one subset of equation unchanged. When 

coefficients in jump series is unchanged in the two regimes, we found the SupF test can not 

reject the null hypothesis, that is, there is no evidence of structural change in the bipower 

variation series regardless of corn or soybean. But if we keep coefficients in bipower variation 



series unchanged, the test rejects the null hypothesis and there is a remarkable coincidence of the 

break date for the system of jump and bipower variation as a whole with and without restrictions. 

The statistical significance is very strong for soybean, say, 1% level, while it is about relatively 

weak for corn, say, 10% level. Apparently, the structural change in the realized volatilities for 

corn and soybean is due to roughly simultaneous breaks in the jump series.  

 

7. Conclusion 

We use newly nonparametric volatility measures and break techniques to estimate common 

breaks across grain futures over the recent ten years. Our results show one structural change in 

realized volatilities occurred in 2006 for corn and in 2007 for soybean. But the date difference 

between them cannot be negligible. We disaggregate the realized volatilities into a continuous 

component and a jump part and found the source of structural beak in realized volatilities is from 

jumps.  
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Table 1 Descriptive statistics for Corn and Soybean volatility measures 

 

 Corn Soybean 

                   Jump                   Jump 

Mean -9.142 -9.467 0.325 -8.978 -9.142 0.164 

Median -9.199 -9.459 0.252 -9.037 -9.208 0.126 

Std. dev. 0.879 1.000 0.324 0.725 0.746 0.226 

Skewness 0.239 -0.166 2.418 0.392 0.318 2.235 

Kurtosis 3.104 3.114 18.73 3.172 3.166 16.27 

Ljung-Box(5) 3214 

(0.000) 

3642 

(0.000) 

219.1 

(0.000) 

3291 

(0.000) 

3084 

(0.000) 

125.4 

(0.000) 

Ljung-Box(10) 5769 

(0.000) 

6657 

(0.000) 

493.6 

(0.000) 

5896 

(0.000) 

5386 

(0.000) 

171.9 

(0.000) 

Ljung-Box(15) 8021 

(0.000) 

9931 

(0.000) 

682.9 

(0.000) 

8107 

(0.000) 

7311 

(0.000) 

227.5 

(0.000) 

Ljung-Box(20) 10030 

(0.000) 

11716 

(0.000) 

840.8 

(0.000) 

10031 

(0.000) 

9001 

(0.000) 

269.3 

(0.000) 

 

  



 

Table 2. Bai and Perron Test for Structural change in Individual Grain 

      Test     Test Break Date 90% 

Confidence Interval   0vs.1 break       1 vs. 2 breaks      

Corn 21.20 16.19 7.26 18.11 11/18/2006 [7/5/2006   5/10/2007] 

Soybean 17.12 16.19 17.51 18.11 11/27/2007 [11/1/2007   6/5/2008] 

 

Note: we did not give the test statistics for the no-break versus one more breaks because all of them reject the null 

hypothesis.  

 

 

 

 

 

 

  



Table 3. Estimates for the Corn HAR Model 

Coe. Estimate St. Er. p-value 

    -1.60 0.35 0.00 

    0.11 0.03 0.00 

    0.47 0.06 0.00 

    0.27 0.06 0.00 

    -1.39 0.44 0.00 

    0.16 0.04 0.00 

    0.23 0.08 0.00 

    0.44 0.08 0.00 

 

  



 

Table 4. Estimates for the Soybean HAR Model 

Coe. Estimate St. Er. p-value 

    -0.78 0.29 0.01 

    0.12 0.04 0.00 

    0.51 0.07 0.00 

    0.27 0.06 0.00 

    -0.91 0.44 0.04 

    0.26 0.05 0.00 

    0.22 0.09 0.02 

    0.41 0.09 0.00 

 

  



 

Table 5. Qu and Perron Test for Structural change in a system of equations 

      Test     Test Break Date 90% 

Confidence Interval   0vs.1 break       1 vs. 2 breaks      

All coefficients in regressions are allowed changed 

Corn 48.3 21.5 15.68 21.70 2/8/2006 [12/7/2005   4/10/2006] 

Soybean 17.12 16.19 17.51 18.11 11/26/2007 [8/30/2007   2/22/2008] 

Only coefficients in jump regressions are allowed changed 

Corn  18.89 21.37 15.33 24.50 1/5/2006 [8/19/2005   5/19/2006] 

Soybean  36.99 21.37 17.33 24.50 11/26/2007 [7/30/2007    4/3/2008] 

Only coefficients in Bipower variation regressions are allowed changed 

Corn  13.48 25.09 -- -- -- -- 

Soybean 17.06 25.09 -- -- -- -- 

 

 

 

 

  



Figure 1. Time series of logarithmic realized volatility, logarithmic bipower variation, and jumps 

for corn futures from 2001 to 2010 
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Figure 2. Time series of logarithmic realized volatility, logarithmic bipower variation, and jumps 

for soybean futures from 2001 to 2010 
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