50,860 research outputs found

    Nonparametric Density Estimation Using Partially Rank-Ordered Set Samples With Application in Estimating the Distribution of Wheat Yield

    Full text link
    We study nonparametric estimation of an unknown density function ff based on the ranked-based observations obtained from a partially rank-ordered set (PROS) sampling design. PROS sampling design has many applications in environmental, ecological and medical studies where the exact measurement of the variable of interest is costly but a small number of sampling units can be ordered with respect to the variable of interest by any means other than actual measurements and this can be done at low cost. PROS observations involve independent order statistics which are not identically distributed and most of the commonly used nonparametric techniques are not directly applicable to them. We first develop kernel density estimates of ff based on an imperfect PROS sampling procedure and study its theoretical properties. Then, we consider the problem when the underlying distribution is assumed to be symmetric and introduce some plug-in kernel density estimators of ff. We use an EM type algorithm to estimate misplacement probabilities associated with an imperfect PROS design. Finally, we expand on various numerical illustrations of our results via several simulation studies and a case study to estimate the distribution of wheat yield using the total acreage of land which is planted in wheat as an easily obtained auxiliary information. Our results show that the PROS density estimate performs better than its SRS and RSS counterparts.Comment: 23 pages, 3 figures, 4 table

    Optimal Energy Allocation for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgments and Energy Harvesting Constraints

    Get PDF
    This paper presents a design methodology for optimal transmission energy allocation at a sensor equipped with energy harvesting technology for remote state estimation of linear stochastic dynamical systems. In this framework, the sensor measurements as noisy versions of the system states are sent to the receiver over a packet dropping communication channel. The packet dropout probabilities of the channel depend on both the sensor's transmission energies and time varying wireless fading channel gains. The sensor has access to an energy harvesting source which is an everlasting but unreliable energy source compared to conventional batteries with fixed energy storages. The receiver performs optimal state estimation with random packet dropouts to minimize the estimation error covariances based on received measurements. The receiver also sends packet receipt acknowledgments to the sensor via an erroneous feedback communication channel which is itself packet dropping. The objective is to design optimal transmission energy allocation at the energy harvesting sensor to minimize either a finite-time horizon sum or a long term average (infinite-time horizon) of the trace of the expected estimation error covariance of the receiver's Kalman filter. These problems are formulated as Markov decision processes with imperfect state information. The optimal transmission energy allocation policies are obtained by the use of dynamic programming techniques. Using the concept of submodularity, the structure of the optimal transmission energy policies are studied. Suboptimal solutions are also discussed which are far less computationally intensive than optimal solutions. Numerical simulation results are presented illustrating the performance of the energy allocation algorithms.Comment: Submitted to IEEE Transactions on Automatic Control. arXiv admin note: text overlap with arXiv:1402.663

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006
    • …
    corecore