11 research outputs found

    Block-Approximated Exponential Random Graphs

    Get PDF
    An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs. By utilizing fast matrix block-approximation techniques, we propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions, while being able to meaningfully model both local information of the graph (e.g., degrees) as well as global information (e.g., clustering coefficient, assortativity, etc.) if desired. This allows one to efficiently generate random networks with similar properties as an observed network, and the models can be used for several downstream tasks such as link prediction. Our methods are scalable to sparse graphs consisting of millions of nodes. Empirical evaluation demonstrates competitiveness in terms of both speed and accuracy with state-of-the-art methods -- which are typically based on embedding the graph into some low-dimensional space -- for link prediction, showcasing the potential of a more direct and interpretable probabalistic model for this task.Comment: Accepted for DSAA 2020 conferenc

    Learning to count: A deep learning framework for graphlet count estimation

    Get PDF
    International audienceGraphlet counting is a widely-explored problem in network analysis and has been successfully applied to a variety of applications in many domains, most notatbly bioinformatics, social science and infrastructure network studies. Efficiently computing graphlet counts remains challenging due to the combinatorial explosion, where a naive enumeration algorithm needs O(NkN^k) time for kk-node graphlets in a network of size NN.Recently, many works introduced carefully designed combinatorial and sampling methods with encouraging results. However, the existing methods ignore the fact that graphlet counts and the graph structural information are correlated. They always consider a graph as a new input and repeat the tedious counting procedure on a regular basis even if it is similar or exactly isomorphic to previously studied graphs. This provides an opportunity to speed up the graphlet count estimation procedure by exploiting this correlation via learning methods. In this paper, we raise a novel Graphlet Count Learning (GCL) problem: given a set of historical graphs with known graphlet counts, how to learn to estimate/predict graphlet count for unseen graphs coming from the same (or similar) underlying distribution. We develop a deep learning framework which contains two {\em convolutional neural network} (CNN) models and a series of data {\em preprocessing techniques} to solve the GCL problem. Extensive experiments are conducted on three types of synthetic random graphs and three types of real world graphs for all 3,4,5-node graphlets to demonstrate the accuracy, efficiency and generalizability of our framework. Compared with state-of-the-art exact/sampling methods, our framework shows great potential, which can offer up to two orders of magnitude speedup on synthetic graphs and achieves on par speed on real world graphs with competitive accuracy

    Mining and modeling graphs using patterns and priors

    No full text
    corecore