4,954 research outputs found

    A Compressed Sampling and Dictionary Learning Framework for WDM-Based Distributed Fiber Sensing

    Full text link
    We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a pre-processing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.Comment: Accepted for publication in Journal of the Optical Society of America A [ \copyright\ 2017 Optical Society of America.]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    Efficient and Stable Acoustic Tomography Using Sparse Reconstruction Methods

    Get PDF
    We study an acoustic tomography problem and propose a new inversion technique based on sparsity. Acoustic tomography observes the parameters of the medium that influence the speed of sound propagation. In the human body, the parameters that mostly influence the sound speed are temperature and density, in the ocean - temperature and current, in the atmosphere - temperature and wind. In this study, we focus on estimating temperature in the atmosphere using the information on the average sound speed along the propagation path. The latter is practically obtained from travel time measurements. We propose a reconstruction algorithm that exploits the concept of sparsity. Namely, the temperature is assumed to be a linear combination of some functions (e.g. bases or set of different bases) where many of the coefficients are known to be zero. The goal is to find the non-zero coefficients. To this end, we apply an algorithm based on linear programming that under some constrains finds the solution with minimum l0 norm. This is actually equivalent to the fact that many of the unknown coefficients are zeros. Finally, we perform numerical simulations to assess the effectiveness of our approach. The simulation results confirm the applicability of the method and demonstrate high reconstruction quality and robustness to noise
    • …
    corecore