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ABSTRACT 
We study an acoustic tomography problem and propose a new inversion technique based on 
sparsity. Acoustic tomography observes the parameters of the medium that influence the speed 
of sound propagation. In the human body, the parameters that mostly influence the sound 
speed are temperature and density, in the ocean - temperature and current, in the atmosphere - 
temperature and wind. In this study, we focus on estimating temperature in the atmosphere 
using the information on the average sound speed along the propagation path. The latter is 
practically obtained from travel time measurements. We propose a reconstruction algorithm that 
exploits the concept of sparsity. Namely, the temperature is assumed to be a linear combination 
of some functions (e.g. bases or set of different bases) where many of the coefficients are 
known to be zero. The goal is to find the non-zero coefficients. To this end, we apply an 
algorithm based on linear programming that under some constrains finds the solution with 
minimum l0 norm. This is actually equivalent to the fact that many of the unknown coefficients 
are zeros. Finally, we perform numerical simulations to assess the effectiveness of our 
approach. The simulation results confirm the applicability of the method and demonstrate high 
reconstruction quality and robustness to noise. 
  
1. INTRODUCTION 
Tomography methods use the information from the emitted signals that have crossed the field to 
be characterized. Their great success stems from their non-invasive nature and the fact that a 
significantly larger amount of data can be obtained compared to the classical one-sensor one-
measurement setup. However, the methods by which the tomographic data are converted to the 
field values, referred to as the inversion methods, are computationally intensive and often ill-
conditioned. A considerable improvement in this area is still needed. In this work, we propose a 
new inversion technique for some problems in acoustic tomography. 
 
Acoustic tomography observes the parameters of the medium that influence the speed of sound 
propagation. In the human body, the most important parameters that influence the sound speed 
are temperature and density, in the ocean - temperature and current, in the atmosphere - 
temperature and wind. In this study, we focus on estimating temperature in the atmosphere 
using the information on the average sound speed along the propagation path. The latter is 
practically obtained from the travel time measurements [1,2]. Generalization to the estimation of 
other parameters would follow similarly. 
 
The important element in the estimation is the choice of inversion method. In general, the 
inversion method comprises the modelling part and the inversion part. In the modelling part we 
devise a mappingW that models the relationship between the parameters θ  of the unknown 
field and the measured data , i.e. D θWD = . In the second part, we construct an inverse 
mapping that finds θ  which fits best the model, where best relates to the minimum of the 
predefined cost function. The importance of the inversion in many areas resulted in many 
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inversion techniques, among which the iterative reconstruction techniques [3] and the stochastic 
inversions [4,5] are mostly applied in acoustic tomography in the atmosphere. 
 
In this work, we propose a reconstruction algorithm that uses the concept of sparse signal 
representation. Namely, we assume that the temperature can be represented as a linear 
combination of some functions (e.g. bases or set of different bases) where many of the 
coefficients are zero. This assumption covers the cases where, for example, the temperature is 
known to be localized in space, in which case it is sparse in signal domain, or other more 
complicated temperature distributions for which we have a sparse representation in some 
transform domain - for example, the Fourier or wavelet domains. In all cases, the fact that we 
search for a sparse vector of parameters θ  will allow to find the solution even when having 
fewer measurements than the total number of unknowns. This concept is known as 
Compressed Sensing (CS) [6], [7], since to observe a sparse vector θ  of size  we need 

 measurements. Note that the ideas of CS have been recently applied in the 
tomographic problem of the Magnetic Resonance Imaging [8].  

N
NM <

 
To assess the effectiveness of the method, we perform numerical simulations. The simulation 
results confirm the applicability of the method and demonstrate high reconstruction quality and 
robustness to noise. 
 
The paper is organized as follows. Section 2 introduces the problem of estimating the 2-D 
temperature field from the measurements obtained by acoustic tomography. Section 3 
discusses the different concepts of sparsity and describes the reconstruction algorithm. In 
Section 4 we show the simulation results and analyze the reconstruction error. 
  
2. TEMPERATURE ESTIMATION IN ACOUSTIC TOMOGRAPHY 
In dry air, the temperature T  can be inferred from the sound speed, through the following 
relation 

,TRc γ=                                                          (Eq. 1) 

where R is the gas constant and 4.1=γ . If there is no motion of the medium, the speed of 
sound can be computed from the time taken by a sound wave to propagate from a transmitter to 
a receiver, hereafter referred as travel time. Namely, the travel time is equal to 

∫
Γ

= ,1 ds
c

τ                                                           (Eq. 2) 

where  is the ray along which the sound travels from the transmitter to the receiver. For the 
field with a small temperature gradient we can assume that the rays are straight. The speed of 
sound can be further represented as the sum 

Γ

ccc Δ+= 0  where  is the spatial average of 

the speed and is the speed fluctuation. Since in the atmosphere the absolute values of the 
sound speed fluctuations are much smaller than their spatial average, equation (Eq. 2) can be 
linearized to the first order of the fluctuations: 
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Clearly, by measuring the variation in the travel time, we obtain the information on the 
temperature variation 
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In general, taking into account the physical properties of the unknown field always improves the 
reconstruction quality. For this specific problem we can use the fact that the change of 
temperature over time is governed by the heat equation. From this equation, we know that a 
concentrated deposit of heat diffuses away in a Gaussian manner, as described by the 2-D heat 
kernel: 
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where  is a diffusion constant. If there are no active heat sources, the temperature at time t  
can be computed as a convolution of the initial heat at time  with the heat kernel: 

D
0t

[ ]( ).,),(
0

yxhTyxT tt ∗=                                             (Eq. 6) 
 
Keeping the same setup (number of emitters and receivers) we can take the measurements 
over a series of time instants. This will results in a larger number of measurements and 
therefore in a more accurate estimation. 
 
3. INVERSE METHOD 
In the most general approach, the problem of finding TΔ  from its line integrals , or so called 
projections, is solved by applying the inverse Radon transform. However, this is not a very 
practical method since it requires a large number of projections, with special setup geometry. 
An entirely different approach for tomographic reconstruction consists of assuming a parametric 
model for the unknown temperature field and setting up a system of equations for the unknowns 
in terms of the measured data. To estimate unknown parameters employing the classical 
methods would require at least measurements. However, if we choose an appropriate model 
in which most of the parameters are zeros or of small amplitude compared to the rest, then 
using nonlinear methods, related to CS, it is possible to reconstruct all parameters having 

measurements. In Section 3.1 we introduce the basic idea behind CS, and in section 
3.2 and section 3.3 we show how this can be practically applied in our temperature estimation 
problem. 

d
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3.1. Compressed sensing 
To have a general idea of CS, consider a signal x  and suppose that the basis 

],,,[ 21 Nψψψ K=Ψ  provides a K -sparse representation of the signal x , that is, x  can be 
written as a linear combination of K elements of Ψ : 
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where   denotes the position of ln K  nonzero entries of the vector .θ  Alternatively, in matrix 
notation we have 

,θΨ=x  
whereθ  is an  column vector and has1×N K nonzero elements. Unlike in the traditional 
approach where we need measurements, the compressed sensing approach suggests 

measurements. The measurements are obtained as projections of the sparse signal 
N

NM < x  
onto a second set of basis ],,,[ 21 Mφφφ K=Φ , that is 

∑
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where ⋅⋅,  denotes the inner product. To simplify the notation we can write in matrix form 

θWy =  

where nmmnW ψφ ,= . Since , the inversion from the measurement vector NM < y  back to 
the signal x  is ill-posed. However, it has been shown that for the perfect reconstruction of K-
sparse signals of dimension , we need only N NNKOM <<= )log(  measurements [6,7]. In 
this case, the signal can be recovered by solving an l1 minimization problem 

1
minargˆ θθ = s.t.  .θWy =                                          (Eq.  8) 
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This optimization problem, also known as Basis Pursuit [9], can be solved using standard linear 
programming. The solution exists when the bases Φ  and Ψ are incoherent [7], or equivalently, 
when{ }mφ basis set does not provide a sparse representation of the elements{ }mψ . 
 
In the case of noisy measurements, it is possible to adapt the optimization algorithm to 
incorporate the noise [9]. The new optimization procedure can be stated as: 

),min(argˆ
1

2

2
θλθθ +−= Wy                   (Eq. 9)  

whereλ  controls the trade off between the sparsity of the solution and the residual in the 
reconstruction. 
 
3.2 Sparsity in signal domain 

 
Fig. 1. Acoustic tomography setup with 7 emitters and 8 receivers placed around the region of interest. 
The temperature distribution is sparse in the signal domain, as it originates from 3 local sorces. 
 
Consider the tomographic problem in which the goal is to reconstruct the temperature field 
produced by K localized sources inside the region of interest (see Fig.1). In this setup, we 
define a -node grid encompassing the tomographic region and assume that the sources are 
placed on the grid. The temperature field can be seen as a set of 2D Diracs convolved with 
some normalized kernel . 

N

),( yxΛ
 
Assume that there are possible candidates for the kernels. Since for each of  nodes on 
the grid we can choose any of the  possible kernels, there are  total unknowns. As long 
as there are 

p N
p pN

K  active sources, only K  of the unknowns are nonzero. To reconstruct the field, 
one takes M acoustic travel time measurements. The normalized travel time variation along the 
path  can be written as Γ

,))(,)((
1 1
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Γ+− −−Λ=Δ=
p

i

N
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jjijiN dsysyxsxdsTd θ                (Eq. 10) 

where jiN +− )1(θ  is the weight of the kernel  on the nodei j with the position . Putting all ),( jj yx
M  measurements in the matrix form, we get 

.)( 11 ××× ⋅Λ= pNpNMM WD θ                                             (Eq. 11) 
 
The noise of the measurements, the linearization procedure and the model mismatch in the 
system are the main factors that prevent us from using the exact sparse recovery in (Eq. 8). 
Therefore we run the noise-enhanced optimization in (Eq. 9)  

.)min(argˆ
1

2

2
θλθθ +⋅−= WD                             (Eq. 12) 

 
The diffusion of the heat in the region can be incorporated into the system to add more data in 
the reconstruction algorithm. One can predict the change of the kernels in the diffusion process 
by knowing the physical parameters of the medium. In the diffusion process, the shapes of the 
kernels change according to (Eq. 6); however, their positions remain the same. By taking 
measurements over  time instants, one can write k
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where  is found by first computing the new diffused kernel at time .  )(
1ipNMW Λ× it

 
3.3 Sparsity in transform domain 
Consider the case where the temperature field in the region of interest is sparse when 
transformed into another domain. As an example, assume that the temperature is smooth in the 
region of interest. It is well known that smooth signals are sparse in the Fourier domain. The 
idea is to project the temperature field on the subspace spanned by  two dimensional Fourier 
basis functions and then to try to estimate the sparse coefficients of this transform by using l

N
1 

norm minimization techniques. 
 
Denote the basis elements by ],,,[ 21 Nψψψ K=Ψ . The normalized travel-time difference 
along the path Γ  can be represented as: 

.
1
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Γ =

Γ
=Δ=

N

n
nn dsdsTd ϕθ                                         (Eq. 14) 

By putting all the measurements in one column vector , one gets D
.)( 11 ××× ⋅Ψ= pNpNMM WD θ                                             (Eq. 15) 

where the element  of the measurement matrix W  will be the line integral of the basis  
along the path of acoustic ray m . Due to the noise in the system, we run the noise-enhanced 
linear program in (Eq. 9) to find the unknown vector of coefficients. 

mnW n

 
To make use of the diffusion in the reconstruction, one needs to compute the basis elements 
after the diffusion. As explained in Section 2, the new basis elements are found by convolving 
the original elements by the diffusive kernel. In the case of the Fourier domain representation, 
the convolution is replaced by multiplication by a parameter that changes over time. The way to 
write the new system of equations is the same as in (Eq. 13). 
 
There is a lot of freedom in choosing the appropriate basis elements to approximate the field of 
interest in a sparse manner. For example wavelet expansion can be used whenever there are 
sharp transitions in the field since wavelets can represent sharp transitions in a very efficient 
manner. As one can see, there is a strong connection between image compression techniques 
and our tomography inversion method.  
 
4.SIMULATION RESULTS  
In this section, we are going to show the simulation results for two different temperature models, 
one that reflects sparsity in signal domain and the other that reflects sparsity in transform 
domain. In the simulations, we first compute the travel times for a given temperature distribution 
and then use them as the input data for our reconstruction algorithm. 
 
In the first scenario, we assume that the temperature is localized in space. The setup is identical 
to the one explained in Section 3.2. The 2-D Diracs are convolved with the 2-D cubic B-splines: 

      

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤

<≤
−

<≤+−

=

α

α
α

ααα

αβ

r

r
r

rrr

r

20

21
6

)2(

10

)(
3

23
2

3

3

3

2

2

 

 

where we use 22 yxr +=  as the radial coordinate. The parameter 0>α  is the scale of the 
B-spline that regulates the spline width. In Fig. 2(a) we show the true temperature that is 
composed of  cubic splines, arbitrary placed on the grid of 5=K 1441212 =×  nodes. Their 

 
19th INTERNATIONAL CONGRESS ON ACOUSTICS – ICA2007MADRID 

5



 

positions and the weights are randomly chosen. We also assume that the possible spline scales 
belongs to the set of  elements. In total, we have 4=p 576=pN  unknowns. There are 8 
emitters and 8 receivers placed on the border of the region of interest. The measurements are 
taken in 2 time slots, resulting in 128=M  measurements. To account for the effect of noise 
and the model mismatch, we add 40dB distortion to  and the coefficients in W  (with respect 
to the energy in  and W ). The true temperature distribution is shown on Fig. 2(a). The 
sparse reconstruction algorithm provides the temperature reconstruction with the error shown in 
Fig. 2(b). Due to the distortion, the vector  is not 

D
D

θ̂ K -sparse but has K  large coefficients while 
the others are close to zero. Choosing the positions of the K  largest coefficients as the correct 
ones, we can recompute the weights using the least squares method. The result is shown in 
Fig. 2(c). However, it should be noted that the success of the least squares method is directly 
related to the accuracy of the coefficient positions found in the l1 optimization. 

 
Fig. 2.    (a) True temperature distribution- sparsity in signal domain (b) Reconstruction error with l1 

optimization, (c) Reconstruction error after applying l1+ lS

 
Fig. 3.    (a) True temperature distribution- sparsity in transform domain (b) Reconstruction error with l1 

optimization, (c) Reconstruction error after applying l1+ lS
In the second scenario, we assume that the temperature is sparse in Fourier domain, and it can 
be represented using a sparse vector of Fourier coefficients. The temperature is assumed to be 
a sum of  cosine basis functions that are randomly chosen from a set of  
functions. In this setup, we take the measurements in 3 time slots, what results in  
measurements in total. Again, to model the effect of noise and the model mismatch we add 
30dB of distortion, both to  and W . The true temperature and the reconstruction errors are 
shown in Fig. 3.  We can see that the proposed method exhibits good reconstruction accuracy 
for both scenarios and shows robustness to the noise and model mismatch. 

20=K 484=N
192=M

D

 
References: [1] I.  Jovanovic, L. Sbaiz, and M. Vetterli, : Acoustic Tomography Method for Measuring 
Temperature and Wind Velocity. IEEE Intern. Conf. on Acoust., Speech, and Signal Proces. (2006) 
[2] I.  Jovanovic, L. Sbaiz, and M. Vetterli: Acoustic Tomography for Estimating Temperature and Wind 
Flow. 13-th Intern. Symp. for the Advancement of Boundary Layer Remote Sensing  (2006) 
[3] A. Ziemann, K. Arnold, and A. Raabe: Acoustic travel time tomography – a method for remote sensing 
of the atmospheric surface layer. Meteorol. Atmos. Phys., 71 (1999)  43-51 
[4] D. K. Wilson and D. W. Thomson, “Acoustic tomographic monitoring of the atmospheric surface layer,” 
J. Atmos. Ocean. Tech, , No. 11,(1994) 751–769 
[5] S. N. Vecherin, V. E. Ostachev, G. H. Geodecke, D. K. Wilson, and A. G. Voronovic: Time-dependent 
stochastic inversion in acoustic travel-time tomography of the atmosphere.  J. Acoust. Soc. Am., (2006) 
[6] E. J. Candes, J. Romberg, and T. Tao: Robust uncertainty principles: exact signal reconstruction from 
highly incomplete frequency information.  IEEE Trans. on Information Theory, 52, No. 2, Feb. (2006) 
[7] D. L. Donoho: Compressed sensing.  IEEE Trans. on Information Theory, 52, No. 4, Apr. (2006) 
[8] M. Lustig, D. L. Donoho, and J. M. Pauly: Sparse MRI: The application of compressed sensing for rapid 
MR imaging. Submitted to Magnetic Resonance in Medicine (2007) 
[9] S. S. Chen, D. L. Donoho, and M. A. Saunders: Atomic decomposition by basis pursuit. SIAM Journal 
on Scientific Computing, 21, No. 1, (1998) 33-61 

 
 

19th INTERNATIONAL CONGRESS ON ACOUSTICS – ICA2007MADRID 

6


	1. INTRODUCTION
	2. TEMPERATURE ESTIMATION IN ACOUSTIC TOMOGRAPHY

	In the first scenario, we assume that the temperature is localized in space. The setup is identical to the one explained in Section 3.2. The 2-D Diracs are convolved with the 2-D cubic B-splines:
	       
	where we use   as the radial coordinate. The parameter   is the scale of the B-spline that regulates the spline width. In Fig. 2(a) we show the true temperature that is composed of   cubic splines, arbitrary placed on the grid of   nodes. Their positions and the weights are randomly chosen. We also assume that the possible spline scales belongs to the set of   elements. In total, we have   unknowns. There are 8 emitters and 8 receivers placed on the border of the region of interest. The measurements are taken in 2 time slots, resulting in   measurements. To account for the effect of noise and the model mismatch, we add 40dB distortion to   and the coefficients in   (with respect to the energy in   and  ). The true temperature distribution is shown on Fig. 2(a). The sparse reconstruction algorithm provides the temperature reconstruction with the error shown in Fig. 2(b). Due to the distortion, the vector   is not  -sparse but has   large coefficients while the others are close to zero. Choosing the positions of the   largest coefficients as the correct ones, we can recompute the weights using the least squares method. The result is shown in Fig. 2(c). However, it should be noted that the success of the least squares method is directly related to the accuracy of the coefficient positions found in the l1 optimization.

