6,419 research outputs found

    Clarifying causal mediation analysis for the applied researcher: Defining effects based on what we want to learn

    Full text link
    The incorporation of causal inference in mediation analysis has led to theoretical and methodological advancements -- effect definitions with causal interpretation, clarification of assumptions required for effect identification, and an expanding array of options for effect estimation. However, the literature on these results is fast-growing and complex, which may be confusing to researchers unfamiliar with causal inference or unfamiliar with mediation. The goal of this paper is to help ease the understanding and adoption of causal mediation analysis. It starts by highlighting a key difference between the causal inference and traditional approaches to mediation analysis and making a case for the need for explicit causal thinking and the causal inference approach in mediation analysis. It then explains in as-plain-as-possible language existing effect types, paying special attention to motivating these effects with different types of research questions, and using concrete examples for illustration. This presentation differentiates two perspectives (or purposes of analysis): the explanatory perspective (aiming to explain the total effect) and the interventional perspective (asking questions about hypothetical interventions on the exposure and mediator, or hypothetically modified exposures). For the latter perspective, the paper proposes tapping into a general class of interventional effects that contains as special cases most of the usual effect types -- interventional direct and indirect effects, controlled direct effects and also a generalized interventional direct effect type, as well as the total effect and overall effect. This general class allows flexible effect definitions which better match many research questions than the standard interventional direct and indirect effects

    Identification, Inference and Sensitivity Analysis for Causal Mediation Effects

    Full text link
    Causal mediation analysis is routinely conducted by applied researchers in a variety of disciplines. The goal of such an analysis is to investigate alternative causal mechanisms by examining the roles of intermediate variables that lie in the causal paths between the treatment and outcome variables. In this paper we first prove that under a particular version of sequential ignorability assumption, the average causal mediation effect (ACME) is nonparametrically identified. We compare our identification assumption with those proposed in the literature. Some practical implications of our identification result are also discussed. In particular, the popular estimator based on the linear structural equation model (LSEM) can be interpreted as an ACME estimator once additional parametric assumptions are made. We show that these assumptions can easily be relaxed within and outside of the LSEM framework and propose simple nonparametric estimation strategies. Second, and perhaps most importantly, we propose a new sensitivity analysis that can be easily implemented by applied researchers within the LSEM framework. Like the existing identifying assumptions, the proposed sequential ignorability assumption may be too strong in many applied settings. Thus, sensitivity analysis is essential in order to examine the robustness of empirical findings to the possible existence of an unmeasured confounder. Finally, we apply the proposed methods to a randomized experiment from political psychology. We also make easy-to-use software available to implement the proposed methods.Comment: Published in at http://dx.doi.org/10.1214/10-STS321 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Graphical models for mediation analysis

    Full text link
    Mediation analysis seeks to infer how much of the effect of an exposure on an outcome can be attributed to specific pathways via intermediate variables or mediators. This requires identification of so-called path-specific effects. These express how a change in exposure affects those intermediate variables (along certain pathways), and how the resulting changes in those variables in turn affect the outcome (along subsequent pathways). However, unlike identification of total effects, adjustment for confounding is insufficient for identification of path-specific effects because their magnitude is also determined by the extent to which individuals who experience large exposure effects on the mediator, tend to experience relatively small or large mediator effects on the outcome. This chapter therefore provides an accessible review of identification strategies under general nonparametric structural equation models (with possibly unmeasured variables), which rule out certain such dependencies. In particular, it is shown which path-specific effects can be identified under such models, and how this can be done
    • …
    corecore