17 research outputs found

    Approximately Minwise Independence with Twisted Tabulation

    Full text link
    A random hash function hh is ε\varepsilon-minwise if for any set SS, S=n|S|=n, and element xSx\in S, Pr[h(x)=minh(S)]=(1±ε)/n\Pr[h(x)=\min h(S)]=(1\pm\varepsilon)/n. Minwise hash functions with low bias ε\varepsilon have widespread applications within similarity estimation. Hashing from a universe [u][u], the twisted tabulation hashing of P\v{a}tra\c{s}cu and Thorup [SODA'13] makes c=O(1)c=O(1) lookups in tables of size u1/cu^{1/c}. Twisted tabulation was invented to get good concentration for hashing based sampling. Here we show that twisted tabulation yields O~(1/u1/c)\tilde O(1/u^{1/c})-minwise hashing. In the classic independence paradigm of Wegman and Carter [FOCS'79] O~(1/u1/c)\tilde O(1/u^{1/c})-minwise hashing requires Ω(logu)\Omega(\log u)-independence [Indyk SODA'99]. P\v{a}tra\c{s}cu and Thorup [STOC'11] had shown that simple tabulation, using same space and lookups yields O~(1/n1/c)\tilde O(1/n^{1/c})-minwise independence, which is good for large sets, but useless for small sets. Our analysis uses some of the same methods, but is much cleaner bypassing a complicated induction argument.Comment: To appear in Proceedings of SWAT 201

    Continuous Monitoring of Distributed Data Streams over a Time-based Sliding Window

    Get PDF
    The past decade has witnessed many interesting algorithms for maintaining statistics over a data stream. This paper initiates a theoretical study of algorithms for monitoring distributed data streams over a time-based sliding window (which contains a variable number of items and possibly out-of-order items). The concern is how to minimize the communication between individual streams and the root, while allowing the root, at any time, to be able to report the global statistics of all streams within a given error bound. This paper presents communication-efficient algorithms for three classical statistics, namely, basic counting, frequent items and quantiles. The worst-case communication cost over a window is O(kϵlogϵNk)O(\frac{k} {\epsilon} \log \frac{\epsilon N}{k}) bits for basic counting and O(kϵlogNk)O(\frac{k}{\epsilon} \log \frac{N}{k}) words for the remainings, where kk is the number of distributed data streams, NN is the total number of items in the streams that arrive or expire in the window, and ϵ<1\epsilon < 1 is the desired error bound. Matching and nearly matching lower bounds are also obtained.Comment: 12 pages, to appear in the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), 201

    Interval Selection in the Streaming Model

    Full text link
    A set of intervals is independent when the intervals are pairwise disjoint. In the interval selection problem we are given a set I\mathbb{I} of intervals and we want to find an independent subset of intervals of largest cardinality. Let α(I)\alpha(\mathbb{I}) denote the cardinality of an optimal solution. We discuss the estimation of α(I)\alpha(\mathbb{I}) in the streaming model, where we only have one-time, sequential access to the input intervals, the endpoints of the intervals lie in {1,...,n}\{1,...,n \}, and the amount of the memory is constrained. For intervals of different sizes, we provide an algorithm in the data stream model that computes an estimate α^\hat\alpha of α(I)\alpha(\mathbb{I}) that, with probability at least 2/32/3, satisfies 12(1ε)α(I)α^α(I)\tfrac 12(1-\varepsilon) \alpha(\mathbb{I}) \le \hat\alpha \le \alpha(\mathbb{I}). For same-length intervals, we provide another algorithm in the data stream model that computes an estimate α^\hat\alpha of α(I)\alpha(\mathbb{I}) that, with probability at least 2/32/3, satisfies 23(1ε)α(I)α^α(I)\tfrac 23(1-\varepsilon) \alpha(\mathbb{I}) \le \hat\alpha \le \alpha(\mathbb{I}). The space used by our algorithms is bounded by a polynomial in ε1\varepsilon^{-1} and logn\log n. We also show that no better estimations can be achieved using o(n)o(n) bits of storage. We also develop new, approximate solutions to the interval selection problem, where we want to report a feasible solution, that use O(α(I))O(\alpha(\mathbb{I})) space. Our algorithms for the interval selection problem match the optimal results by Emek, Halld{\'o}rsson and Ros{\'e}n [Space-Constrained Interval Selection, ICALP 2012], but are much simpler.Comment: Minor correction

    Bottom-k and Priority Sampling, Set Similarity and Subset Sums with Minimal Independence

    Full text link
    We consider bottom-k sampling for a set X, picking a sample S_k(X) consisting of the k elements that are smallest according to a given hash function h. With this sample we can estimate the relative size f=|Y|/|X| of any subset Y as |S_k(X) intersect Y|/k. A standard application is the estimation of the Jaccard similarity f=|A intersect B|/|A union B| between sets A and B. Given the bottom-k samples from A and B, we construct the bottom-k sample of their union as S_k(A union B)=S_k(S_k(A) union S_k(B)), and then the similarity is estimated as |S_k(A union B) intersect S_k(A) intersect S_k(B)|/k. We show here that even if the hash function is only 2-independent, the expected relative error is O(1/sqrt(fk)). For fk=Omega(1) this is within a constant factor of the expected relative error with truly random hashing. For comparison, consider the classic approach of kxmin-wise where we use k hash independent functions h_1,...,h_k, storing the smallest element with each hash function. For kxmin-wise there is an at least constant bias with constant independence, and it is not reduced with larger k. Recently Feigenblat et al. showed that bottom-k circumvents the bias if the hash function is 8-independent and k is sufficiently large. We get down to 2-independence for any k. Our result is based on a simply union bound, transferring generic concentration bounds for the hashing scheme to the bottom-k sample, e.g., getting stronger probability error bounds with higher independence. For weighted sets, we consider priority sampling which adapts efficiently to the concrete input weights, e.g., benefiting strongly from heavy-tailed input. This time, the analysis is much more involved, but again we show that generic concentration bounds can be applied.Comment: A short version appeared at STOC'1

    On Scalable Attack Detection in the Network

    Full text link
    corecore