2 research outputs found

    Monitoring Achilles tendon healing progress in ultrasound imaging with convolutional neural networks

    Full text link
    Achilles tendon rupture is a debilitating injury, which is typically treated with surgical repair and long-term rehabilitation. The recovery, however, is protracted and often incomplete. Diagnosis, as well as healing progress assessment, are largely based on ultrasound and magnetic resonance imaging. In this paper, we propose an automatic method based on deep learning for analysis of Achilles tendon condition and estimation of its healing progress on ultrasound images. We develop custom convolutional neural networks for classification and regression on healing score and feature extraction. Our models are trained and validated on an acquired dataset of over 250.000 sagittal and over 450.000 axial ultrasound slices. The obtained estimates show a high correlation with the assessment of expert radiologists, with respect to all key parameters describing healing progress. We also observe that parameters associated with i.a. intratendinous healing processes are better modeled with sagittal slices. We prove that ultrasound imaging is quantitatively useful for clinical assessment of Achilles tendon healing process and should be viewed as complementary to magnetic resonance imaging.Comment: Paper accepted to MICCAI'19 SUSI worksho

    Estimating Achilles tendon healing progress with convolutional neural networks

    No full text
    Quantitative assessment of a treatment progress in the Achilles tendon healing process - one of the most common musculoskeletal disorder in modern medical practice - is typically a long and complex process: multiple MRI protocols need to be acquired and analysed by radiology experts. In this paper, we propose to significantly reduce the complexity of this assessment using a novel method based on a pre-trained convolutional neural network. We first train our neural network on over 500,000 2D axial cross-sections from over 3000 3D MRI studies to classify MRI images as belonging to a healthy or injured class, depending on the patient's condition. We then take the outputs of modified pre-trained network and apply linear regression on the PCA-reduced space of the features to assess treatment progress. Our method allows to reduce up to 5-fold the amount of data needed to be registered during the MRI scan without any information loss. Furthermore, we are able to predict the healing process phase with equal accuracy to human experts in 3 out of 6 main criteria. Finally, contrary to the current approaches to regeneration assessment that rely on radiologist subjective opinion, our method allows to objectively compare different treatments methods which can lead to improved diagnostics and patient's recovery.Comment: Paper accepted to MICCAI'1
    corecore