7,316 research outputs found

    Function-led design of multifunctional stimuli-responsive superhydrophobic surface based on hierarchical graphene-titania nanocoating

    Full text link
    Multifunctional smart superhydrophobic surface with full-spectrum tunable wettability control is fabricated through the self-assembly of the graphene and titania nanofilm double-layer coating. Advanced microfluidic manipulative functions, including directional water transport, adhesion & spreading controls, droplet storage & transfer, and droplet sensing array, can be readily realized on this smart surface. An in-depth mechanism study regarding the underlying secrets of the tunable wettability and the UV-induced superhydrophilic conversion of anatase titania are also presented

    Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows

    Get PDF
    The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electro-mechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research

    Do Binary Hard Disks Exhibit an Ideal Glass Transition?

    Full text link
    We demonstrate that there is no ideal glass transition in a binary hard-disk mixture by explicitly constructing an exponential number of jammed packings with densities spanning the spectrum from the accepted ``amorphous'' glassy state to the phase-separated crystal. Thus the configurational entropy cannot be zero for an ideal amorphous glass, presumed distinct from the crystal in numerous theoretical and numerical estimates in the literature. This objection parallels our previous critique of the idea that there is a most-dense random (close) packing for hard spheres [Torquato et al, Phys. Rev. Lett., 84, 2064 (2000)].Comment: Submitted for publicatio

    Novel Experimentally Observed Phenomena in Soft Matter

    Full text link
    Soft materials such as colloidal suspensions, polymer solutions and liquid crystals are constituted by mesoscopic entities held together by weak forces. Their mechanical moduli are several orders of magnitude lower than those of atomic solids. The application of small to moderate stresses to these materials results in the disruption of their microstructures. The resulting flow is non-Newtonian and is characterised by features such as shear rate-dependent viscosities and non-zero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, such as turbulent drag reduction, elastic turbulence, the formation of shear bands and the existence of rheological chaos, flow-induced birefringence and the unusual rheology of soft glassy materials, are reviewed. The focus then shifts to observations of the liquid-like response of granular media that have been subjected to external forces. The article concludes with examples of the patterns that emerge when certain soft materials are vibrated, or when they are displaced with Newtonian fluids of lower viscosities.Comment: 30 pages, 11 figures, invited review article, supplementary videos may be obtained from the journal websit
    corecore