15,749 research outputs found

    Stabilization of solitons of the multidimensional nonlinear Schrodinger equation: Matter-wave breathers

    Full text link
    We demonstrate that stabilization of solitons of the multidimensional Schrodinger equation with a cubic nonlinearity may be achieved by a suitable periodic control of the nonlinear term. The effect of this control is to stabilize the unstable solitary waves which belong to the frontier between expanding and collapsing solutions and to provide an oscillating solitonic structure, some sort of breather-type solution. We obtain precise conditions on the control parameters to achieve the stabilization and compare our results with accurate numerical simulations of the nonlinear Schrodinger equation. Because of the application of these ideas to matter waves these solutions are some sort of matter breathers

    Localized solutions for the finite difference semi-discretization of the wave equation

    Get PDF
    We study the propagation properties of the solutions of the finite-difference space semi-discrete wave equation on an uniform grid of the whole Euclidean space. We provide a construction of high frequency wave packets that propagate along the corresponding bi-characteristic rays of Geometric Optics with a group velocity arbitrarily close to zero. Our analysis is motivated by control theoretical issues. In particular, the continuous wave equation has the so-called observability property: for a sufficiently large time, the total energy of its solutions can be estimated in terms of the energy concentrated in the exterior of a compact set. This fails to be true, uniformly on the mesh-size parameter, for the semi-discrete schemes and the observability constant blows-up at an arbitrarily large polynomial order. Our contribution consists in providing a rigorous derivation of those wave packets and in analyzing their behavior near that ray, by taking into account the subtle added dispersive effects that the numerical scheme introduces.Comment: 7 pages, 1 figur

    A finite element data assimilation method for the wave equation

    Full text link
    We design a primal-dual stabilized finite element method for the numerical approximation of a data assimilation problem subject to the acoustic wave equation. For the forward problem, piecewise affine, continuous, finite element functions are used for the approximation in space and backward differentiation is used in time. Stabilizing terms are added on the discrete level. The design of these terms is driven by numerical stability and the stability of the continuous problem, with the objective of minimizing the computational error. Error estimates are then derived that are optimal with respect to the approximation properties of the numerical scheme and the stability properties of the continuous problem. The effects of discretizing the (smooth) domain boundary and other perturbations in data are included in the analysis.Comment: 23 page
    • …
    corecore