3,454 research outputs found

    Learning-based quantum error mitigation

    Full text link
    If NISQ-era quantum computers are to perform useful tasks, they will need to employ powerful error mitigation techniques. Quasi-probability methods can permit perfect error compensation at the cost of additional circuit executions, provided that the nature of the error model is fully understood and sufficiently local both spatially and temporally. Unfortunately these conditions are challenging to satisfy. Here we present a method by which the proper compensation strategy can instead be learned ab initio. Our training process uses multiple variants of the primary circuit where all non-Clifford gates are substituted with gates that are efficient to simulate classically. The process yields a configuration that is near-optimal versus noise in the real system with its non-Clifford gate set. Having presented a range of learning strategies, we demonstrate the power of the technique both with real quantum hardware (IBM devices) and exactly-emulated imperfect quantum computers. The systems suffer a range of noise severities and types, including spatially and temporally correlated variants. In all cases the protocol successfully adapts to the noise and mitigates it to a high degree.Comment: 28 pages, 19 figure

    Low-cost error mitigation by symmetry verification

    Full text link
    We investigate the performance of error mitigation via measurement of conserved symmetries on near-term devices. We present two protocols to measure conserved symmetries during the bulk of an experiment, and develop a zero-cost post-processing protocol which is equivalent to a variant of the quantum subspace expansion. We develop methods for inserting global and local symetries into quantum algorithms, and for adjusting natural symmetries of the problem to boost their mitigation against different error channels. We demonstrate these techniques on two- and four-qubit simulations of the hydrogen molecule (using a classical density-matrix simulator), finding up to an order of magnitude reduction of the error in obtaining the ground state dissociation curve.Comment: Published versio

    Digital zero noise extrapolation for quantum error mitigation

    Full text link
    Zero-noise extrapolation (ZNE) is an increasingly popular technique for mitigating errors in noisy quantum computations without using additional quantum resources. We review the fundamentals of ZNE and propose several improvements to noise scaling and extrapolation, the two key components in the technique. We introduce unitary folding and parameterized noise scaling. These are digital noise scaling frameworks, i.e. one can apply them using only gate-level access common to most quantum instruction sets. We also study different extrapolation methods, including a new adaptive protocol that uses a statistical inference framework. Benchmarks of our techniques show error reductions of 18X to 24X over non-mitigated circuits and demonstrate ZNE effectiveness at larger qubit numbers than have been tested previously. In addition to presenting new results, this work is a self-contained introduction to the practical use of ZNE by quantum programmers.Comment: 11 pages, 7 figure

    Testing platform-independent quantum error mitigation on noisy quantum computers

    Full text link
    We apply quantum error mitigation techniques to a variety of benchmark problems and quantum computers to evaluate the performance of quantum error mitigation in practice. To do so, we define an empirically motivated, resource-normalized metric of the improvement of error mitigation which we call the improvement factor, and calculate this metric for each experiment we perform. The experiments we perform consist of zero-noise extrapolation and probabilistic error cancellation applied to two benchmark problems run on IBM, IonQ, and Rigetti quantum computers, as well as noisy quantum computer simulators. Our results show that error mitigation is on average more beneficial than no error mitigation - even when normalized by the additional resources used - but also emphasize that the performance of quantum error mitigation depends on the underlying computer

    Volumetric Benchmarking of Error Mitigation with Qermit

    Get PDF
    The detrimental effect of noise accumulates as quantum computers grow in size. In the case where devices are too small or noisy to perform error correction, error mitigation may be used. Error mitigation does not increase the fidelity of quantum states, but instead aims to reduce the approximation error in quantities of concern, such as expectation values of observables. However, it is as yet unclear which circuit types, and devices of which characteristics, benefit most from the use of error mitigation. Here we develop a methodology to assess the performance of quantum error mitigation techniques. Our benchmarks are volumetric in design, and are performed on different superconducting hardware devices. Extensive classical simulations are also used for comparison. We use these benchmarks to identify disconnects between the predicted and practical performance of error mitigation protocols, and to identify the situations in which their use is beneficial. To perform these experiments, and for the benefit of the wider community, we introduce Qermit - an open source python package for quantum error mitigation. Qermit supports a wide range of error mitigation methods, is easily extensible and has a modular graph-based software design that facilitates composition of error mitigation protocols and subroutines.Comment: 25 pages, Comments welcom

    Robust design under uncertainty in quantum error mitigation

    Full text link
    Error mitigation techniques are crucial to achieving near-term quantum advantage. Classical post-processing of quantum computation outcomes is a popular approach for error mitigation, which includes methods such as Zero Noise Extrapolation, Virtual Distillation, and learning-based error mitigation. However, these techniques have limitations due to the propagation of uncertainty resulting from a finite shot number of the quantum measurement. To overcome this limitation, we propose general and unbiased methods for quantifying the uncertainty and error of error-mitigated observables by sampling error mitigation outcomes. These methods are applicable to any post-processing-based error mitigation approach. In addition, we present a systematic approach for optimizing the performance and robustness of these error mitigation methods under uncertainty, building on our proposed uncertainty quantification methods. To illustrate the effectiveness of our methods, we apply them to Clifford Data Regression in the ground state of the XY model simulated using IBM's Toronto noise model.Comment: 9 pages, 5 figure
    • …
    corecore