2,837 research outputs found

    Communication under Strong Asynchronism

    Full text link
    We consider asynchronous communication over point-to-point discrete memoryless channels. The transmitter starts sending one block codeword at an instant that is uniformly distributed within a certain time period, which represents the level of asynchronism. The receiver, by means of a sequential decoder, must isolate the message without knowing when the codeword transmission starts but being cognizant of the asynchronism level A. We are interested in how quickly can the receiver isolate the sent message, particularly in the regime where A is exponentially larger than the codeword length N, which we refer to as `strong asynchronism.' This model of sparse communication may represent the situation of a sensor that remains idle most of the time and, only occasionally, transmits information to a remote base station which needs to quickly take action. The first result shows that vanishing error probability can be guaranteed as N tends to infinity while A grows as Exp(N*k) if and only if k does not exceed the `synchronization threshold,' a constant that admits a simple closed form expression, and is at least as large as the capacity of the synchronized channel. The second result is the characterization of a set of achievable strictly positive rates in the regime where A is exponential in N, and where the rate is defined with respect to the expected delay between the time information starts being emitted until the time the receiver makes a decision. As an application of the first result we consider antipodal signaling over a Gaussian channel and derive a simple necessary condition between A, N, and SNR for achieving reliable communication.Comment: 26 page

    Physical-layer Network Coding: A Random Coding Error Exponent Perspective

    Full text link
    In this work, we derive the random coding error exponent for the uplink phase of a two-way relay system where physical layer network coding (PNC) is employed. The error exponent is derived for the practical (yet sub-optimum) XOR channel decoding setting. We show that the random coding error exponent under optimum (i.e., maximum likelihood) PNC channel decoding can be achieved even under the sub-optimal XOR channel decoding. The derived achievability bounds provide us with valuable insight and can be used as a benchmark for the performance of practical channel-coded PNC systems employing low complexity decoders when finite-length codewords are used.Comment: Submitted to IEEE International Symposium on Information Theory (ISIT), 201

    Billion-atom Synchronous Parallel Kinetic Monte Carlo Simulations of Critical 3D Ising Systems

    Full text link
    An extension of the synchronous parallel kinetic Monte Carlo (pkMC) algorithm developed by Martinez {\it et al} [{\it J.\ Comp.\ Phys.} {\bf 227} (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors time clocks current in a global sense. Boundary conflicts are rigorously solved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of the serial method, which confirms the statistical validity of the method. We have assessed the parallel efficiency of the method and find that our algorithm scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations
    • …
    corecore