2,840 research outputs found

    Spectral method for the unsteady incompressible Navier-Stokes equations in gauge formulation

    Get PDF
    A spectral method which uses a gauge method, as opposed to a projection method, to decouple the computation of velocity and pressure in the unsteady incompressible Navier-Stokes equations, is presented. Gauge methods decompose velocity into the sum of an auxilary field and the gradient of a gauge variable, which may, in principle, be assigned arbitrary boundary conditions, thus overcoming the issue of artificial pressure boundary conditions in projection methods. A lid-driven cavity flow is used as a test problem. A subtraction method is used to reduce the pollution effect of singularities at the top corners of the cavity. A Chebyshev spectral collocation method is used to discretize spatially. An exponential time differencing method is used to discretize temporally. Matrix diagonalization procedures are used to compute solutions directly and efficiently. Numerical results for the flow at Reynolds number Re = 1000 are presented, and compared to benchmark results. It is shown that the method, called the spectral gauge method, is straightforward to implement, and yields accurate solutions if Neumann boundary conditions are imposed on the gauge variable, but suffers from reduced convergence rates if Dirichlet boundary conditions are imposed on the gauge variable

    An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary

    Full text link
    Common efficient schemes for the incompressible Navier-Stokes equations, such as projection or fractional step methods, have limited temporal accuracy as a result of matrix splitting errors, or introduce errors near the domain boundaries (which destroy uniform convergence to the solution). In this paper we recast the incompressible (constant density) Navier-Stokes equations (with the velocity prescribed at the boundary) as an equivalent system, for the primary variables velocity and pressure. We do this in the usual way away from the boundaries, by replacing the incompressibility condition on the velocity by a Poisson equation for the pressure. The key difference from the usual approaches occurs at the boundaries, where we use boundary conditions that unequivocally allow the pressure to be recovered from knowledge of the velocity at any fixed time. This avoids the common difficulty of an, apparently, over-determined Poisson problem. Since in this alternative formulation the pressure can be accurately and efficiently recovered from the velocity, the recast equations are ideal for numerical marching methods. The new system can be discretized using a variety of methods, in principle to any desired order of accuracy. In this work we illustrate the approach with a 2-D second order finite difference scheme on a Cartesian grid, and devise an algorithm to solve the equations on domains with curved (non-conforming) boundaries, including a case with a non-trivial topology (a circular obstruction inside the domain). This algorithm achieves second order accuracy (in L-infinity), for both the velocity and the pressure. The scheme has a natural extension to 3-D.Comment: 50 pages, 14 figure

    Error analysis of energy-conservative BDF2-FE scheme for the 2D Navier-Stokes equations with variable density

    Full text link
    In this paper, we present an error estimate of a second-order linearized finite element (FE) method for the 2D Navier-Stokes equations with variable density. In order to get error estimates, we first introduce an equivalent form of the original system. Later, we propose a general BDF2-FE method for solving this equivalent form, where the Taylor-Hood FE space is used for discretizing the Navier-Stokes equations and conforming FE space is used for discretizing density equation. We show that our scheme ensures discrete energy dissipation. Under the assumption of sufficient smoothness of strong solutions, an error estimate is presented for our numerical scheme for variable density incompressible flow in two dimensions. Finally, some numerical examples are provided to confirm our theoretical results.Comment: 22 pages, 1 figure
    • …
    corecore