12 research outputs found

    Consensus-Based Optimization on Hypersurfaces: Well-Posedness and Mean-Field Limit

    Full text link
    We introduce a new stochastic differential model for global optimization of nonconvex functions on compact hypersurfaces. The model is inspired by the stochastic Kuramoto-Vicsek system and belongs to the class of Consensus-Based Optimization methods. In fact, particles move on the hypersurface driven by a drift towards an instantaneous consensus point, computed as a convex combination of the particle locations weighted by the cost function according to Laplace's principle. The consensus point represents an approximation to a global minimizer. The dynamics is further perturbed by a random vector field to favor exploration, whose variance is a function of the distance of the particles to the consensus point. In particular, as soon as the consensus is reached, then the stochastic component vanishes. In this paper, we study the well-posedness of the model and we derive rigorously its mean-field approximation for large particle limit

    A blob method for diffusion

    Get PDF
    As a counterpoint to classical stochastic particle methods for diffusion, we develop a deterministic particle method for linear and nonlinear diffusion. At first glance, deterministic particle methods are incompatible with diffusive partial differential equations since initial data given by sums of Dirac masses would be smoothed instantaneously: particles do not remain particles. Inspired by classical vortex blob methods, we introduce a nonlocal regularization of our velocity field that ensures particles do remain particles, and we apply this to develop a numerical blob method for a range of diffusive partial differential equations of Wasserstein gradient flow type, including the heat equation, the porous medium equation, the Fokker-Planck equation, the Keller-Segel equation, and its variants. Our choice of regularization is guided by the Wasserstein gradient flow structure, and the corresponding energy has a novel form, combining aspects of the well-known interaction and potential energies. In the presence of a confining drift or interaction potential, we prove that minimizers of the regularized energy exist and, as the regularization is removed, converge to the minimizers of the unregularized energy. We then restrict our attention to nonlinear diffusion of porous medium type with at least quadratic exponent. Under sufficient regularity assumptions, we prove that gradient flows of the regularized energies converge to solutions of the porous medium equation. As a corollary, we obtain convergence of our numerical blob method, again under sufficient regularity assumptions. We conclude by considering a range of numerical examples to demonstrate our method's rate of convergence to exact solutions and to illustrate key qualitative properties preserved by the method, including asymptotic behavior of the Fokker-Planck equation and critical mass of the two-dimensional Keller-Segel equation

    Aggregation-diffusion equations: dynamics, asymptotics, and singular limits

    Full text link
    Given a large ensemble of interacting particles, driven by nonlocal interactions and localized repulsion, the mean-field limit leads to a class of nonlocal, nonlinear partial differential equations known as aggregation-diffusion equations. Over the past fifteen years, aggregation-diffusion equations have become widespread in biological applications and have also attracted significant mathematical interest, due to their competing forces at different length scales. These competing forces lead to rich dynamics, including symmetrization, stabilization, and metastability, as well as sharp dichotomies separating well-posedness from finite time blowup. In the present work, we review known analytical results for aggregation-diffusion equations and consider singular limits of these equations, including the slow diffusion limit, which leads to the constrained aggregation equation, as well as localized aggregation and vanishing diffusion limits, which lead to metastability behavior. We also review the range of numerical methods available for simulating solutions, with special attention devoted to recent advances in deterministic particle methods. We close by applying such a method -- the blob method for diffusion -- to showcase key properties of the dynamics of aggregation-diffusion equations and related singular limits
    corecore