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Abstract
As a counterpoint to classical stochastic particle methods for diffusion, we develop a deter-
ministic particle method for linear and nonlinear diffusion. At first glance, deterministic
particle methods are incompatible with diffusive partial differential equations since initial
data given by sums of Dirac masses would be smoothed instantaneously: particles do not
remain particles. Inspired by classical vortex blob methods, we introduce a nonlocal regu-
larization of our velocity field that ensures particles do remain particles and apply this to
develop a numerical blob method for a range of diffusive partial differential equations of
Wasserstein gradient flow type, including the heat equation, the porous medium equation,
the Fokker–Planck equation, and the Keller–Segel equation and its variants. Our choice of
regularization is guided by the Wasserstein gradient flow structure, and the corresponding
energy has a novel form, combining aspects of the well-known interaction and potential ener-
gies. In the presence of a confining drift or interaction potential, we prove that minimizers of
the regularized energy exist and, as the regularization is removed, converge to the minimizers
of the unregularized energy. We then restrict our attention to nonlinear diffusion of porous
medium type with at least quadratic exponent. Under sufficient regularity assumptions, we
prove that gradient flows of the regularized porous medium energies converge to solutions
of the porous medium equation. As a corollary, we obtain convergence of our numerical
blob method. We conclude by considering a range of numerical examples to demonstrate our
method’s rate of convergence to exact solutions and to illustrate key qualitative properties
preserved by the method, including asymptotic behavior of the Fokker–Planck equation and
critical mass of the two-dimensional Keller–Segel equation.

Mathematics Subject Classification 35Q35 · 35Q82 · 65M12 · 82C22

Communicated by L. Ambrosio.

JAC was partially supported by the Royal Society via a Wolfson Research Merit Award and by EPSRC
Grant Number EP/P031587/1. KC was supported by a UC President’s Postdoctoral Fellowship and NSF
DMS-1401867. FSP was partially supported by a 2015 Doris Chen mobility award through Imperial College
London, and also acknowledges a 2015 SIAM student travel award. The authors were supported by NSF
RNMS (KI-Net) Grant #11-07444, and acknowledge the CNA at CMU for their kind support of a visit to
Pittsburgh in the final stages of this work. This work used XSEDE Comet at the San Diego Supercomputer
Center through allocation ddp287, which is supported by NSF ACI-1548562.

B José Antonio Carrillo
carrillo@imperial.ac.uk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-019-1486-3&domain=pdf


53 Page 2 of 53 J. A. Carrillo et al.

1 Introduction

For a range of partial differential equations, from the heat and porousmedium equations to the
Fokker–Planck and Keller–Segel equations, solutions can be characterized as gradient flows
with respect to the quadratic Wasserstein distance. In particular, solutions of the equation

∂tρ = ∇ · (∇Vρ)
︸ ︷︷ ︸

drift

+∇ · ((∇W ∗ ρ)ρ)
︸ ︷︷ ︸

interaction

+ �ρm
︸︷︷︸

diffusion

V : Rd → R, W : Rd → R, m ≥ 1,

(1)

where ρ is a curve in the space of probability measures, are formally Wasserstein gradient
flows of the energy

E(ρ) =
∫

V dρ + 1

2

∫

(W ∗ ρ) dρ + Fm(ρ),

Fm(ρ) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

∫

ρ log(ρ) dLd for m = 1, ρ � Ld ,
∫

ρm

m − 1
dLd for m > 1, ρ � Ld

+∞ otherwise,

(2)

where Ld is d-dimensional Lebesgue measure. This implies that solutions ρ(t, x) of (1)
satisfy

∂tρ = −∇W2E(ρ),

for a generalized notion of gradient ∇W2 , which is formally given by

∇W2E(ρ) = −∇ ·
(

ρ∇ δE
δρ

)

,

where δE/δρ is the first variation density of E at ρ (c.f. [3,27,28,82]).
Over the past twenty years, the Wasserstein gradient flow perspective has led to several

new theoretical results, including asymptotic behavior of solutions of nonlinear diffusion
and aggregation–diffusion equations [27,28,70], stability of steady states of the Keller–Segel
equation [10,12], and uniqueness of bounded solutions [26]. The underlying gradient flow
theory has been well developed in the case of convex (or, more generally, semiconvex)
energies [2,3,5,24,55,77,82,83], and more recently, is being extended to consider energies
with more general moduli of convexity [6,26,28,35].

Wasserstein gradient flow theory has also inspired new numerical methods, with a com-
mon goal of maintaining the gradient flow structure at the discrete level, albeit in different
ways. Recent work has considered finite volume, finite element, and discontinuous Galerkin
methods [9,16,21,61,80]. Such methods are energy decreasing, positivity preserving, and
mass conserving at the semidiscrete level, leading to high-order approximations. They natu-
rally preserve stationary states, since dissipation of the free energy provides inherent stability,
and often also capture the rate of asymptotic decay. Another common strategy for preserving
the gradient flow structure at the discrete level is to leverage the discrete-time variational
scheme introduced by Jordan et al. [55]. A wide variety of strategies have been developed
for this approach: working with different discretizations of the space of Lagrangian maps
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[42,56,67–69], using alternative formulations of the variational structure [43], making use
of convex analysis and computational geometry to solve the optimality conditions [8], and
many others [11,17,23,29,31,47,48,84].

In this work, we develop a deterministic particle method for Wasserstein gradient flows.
The simplest implementation of a particle method for Eq. (1), in the absence of diffusion,
begins by first discretizing the initial datum ρ0 as a finite sum of N Dirac masses, that is,

ρ0 ≈ ρN
0 =

N
∑

i=1
δxi mi , xi ∈ R

d , mi ≥ 0, (3)

where δxi is a Dirac mass centered at xi ∈ R
d . Without diffusion and provided sufficient

regularity of V and W , the solution ρN of (1) with initial datum ρN
0 remains a sum of Dirac

masses at all times t , so that

ρN (t) =
N
∑

i=1
δxi (t)mi , (4)

and solving the partial differential equation (1) reduces to solving a system of ordinary
differential equations for the locations of the Dirac masses,

ẋi = −∇V (xi )−
N
∑

j=1
∇W (xi − x j )m j , i ∈ {1, . . . , N }. (5)

The particle solution ρN (t) is the Wasserstein gradient flow of the energy (2) with initial
data ρN

0 , so in particular the energy decreases in time along this spatially discrete solution.
The ODE system (5) can be solved using range of fast numerical methods, and the resulting
discretized solution ρN (t) can be interpolated in a variety of ways for graphical visualization.

This simple particle method converges to exact solutions of equation (1) under suitable
assumptions on V and W , as has been shown in the rigorous derivation of this equation
as the mean-field limit of particle systems [22,24,52]. Recent work, aimed at capturing
competing effects in repulsive–attractive systems and developing methods with higher-order
accuracy, has considered enhancements of standard particle methods inspired by techniques
from classical fluid dynamics, including vortex blob methods and linearly transformed parti-
cle methods [19,36,46,49]. Bertozzi and the second author’s blob method for the aggregation
equation obtained improved rates of convergence to exact solutions for singular interaction
potentials W by convolving W with a mollifier ϕε . In terms of the Wasserstein gradient
flow perspective this translates into regularizing the interaction energy (1/2)

∫

(W ∗ ρ) dρ

as (1/2)
∫

(W ∗ ϕε ∗ ρ) dρ.
When diffusion is present in Eq. (1), the fundamental assumption underlying basic particle

methods breaks down: particles do not remain particles, or in other words, the solution of
(1) with initial datum (3) is not of the form (4). A natural way to circumvent this difficulty,
at least in the case of linear diffusion (m = 1), is to consider a stochastic particle method, in
which the particles evolve via Brownian motion. Such approaches were originally developed
in the classical fluids case [33], and several recent works have considered analogous methods
for equations of Wasserstein gradient flow type, including the Keller–Segel equation [50,
52,53,62]. The main practical disadvantage of these stochastic methods is that their results
must be averaged over a large number of runs to compensate for the inherent randomness
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of the approximation. Furthermore, to the authors’ knowledge, such methods have not been
extended to the case of degenerate diffusion m > 1.

Alternatives to stochastic methods have been explored for similar equations, motivated by
particle-in-cell methods in classical fluid, kinetic, and plasma physics equations. These alter-
natives proceed by introducing a suitable regularization of the flux of the continuity equation
[34,75]. Degond andMustieles considered the case of linear diffusion (m = 1) by interpreting
the Laplacian as induced by a velocity field v, �ρ = ∇ · (vρ), v = ∇ρ/ρ, and regulariz-
ing the numerator and denominator separately by convolution with a mollifier [40,74]. For
this regularized equation, particles do remain particles, and a standard particle method can
be applied. Well-posedness of the resulting system of ordinary differential equations and a
priori estimates relevant to the method were studied by Lacombe and Mas-Gallic [58] and
extended to the case of the porous medium equation by Oelschläger and Lions and Mas-
Gallic [60,63,66]. In the case m = 2 on bounded domains, Lions and Mas-Gallic succeeded
in showing that solutions to the regularized equation converge to solutions of the unregu-
larized equation, as long as the initial data has uniformly bounded entropy. Unfortunately,
this assumption fails to hold when the initial datum is given by a particle approximation (3),
and consequently Lions and Mas-Gallic’s result doesn’t guarantee convergence of the par-
ticle method. Oelschläger [66], on the other hand, succeeded in proving convergence of the
deterministic particle method, as long as the corresponding solution of the porous medium
equation is smooth and positive. An alternative approach, now known as the particle strength
exchange method, incorporates instead the effects of diffusion by allowing the weights of
the particles mi to vary in time. Degond and Mas-Gallic developed such a method for linear
diffusion (m = 1) and proved second order convergence with respect to the initial particle
spacing [38,39]. The main disadvantage of these existing deterministic particle methods is
that, with the exception of Lions andMasGallic’s work whenm = 2, they do not preserve the
gradient flow structure [60]. Other approaches that respect the method’s variational structure
have been recently proposed in one dimension by approximating particles by non-overlapping
blobs [25,30]. For further background on deterministic particle methods, we refer the reader
to Chertock’s comprehensive review [32].

The goal of the present paper is to introduce a new deterministic particle method for
equations of the form (1), with linear and nonlinear diffusion (m ≥ 1), that respects the
problem’s underlying gradient flow structure and naturally extends to all dimensions. In
contrast to the above described work, which began by regularizing the flux of the continuity
equation, we follow an approach analogous to Bertozzi and the second author’s blob method
for the aggregation equation and regularize the associated internal energy F . For a mollifier
ϕε(x) = ϕ(x/ε)/εd , x ∈ R

d , ε > 0, we define

Fm
ε (ρ) =

⎧

⎪
⎨

⎪
⎩

∫

log(ϕε ∗ ρ) dρ for m = 1,
∫

(ϕε ∗ ρ)m−1

m − 1
dρ for m > 1.

(6)

For more general nonlinear diffusion, we define

Fε(ρ) =
∫

F(ϕε ∗ ρ) dρ, F : (0,∞) → R. (7)

As ε → 0, we prove that the regularized internal energies Fm
ε �-converge to the unregu-

larized energies Fm for all m ≥ 1; see Theorem 4.1. In the presence of a confining drift or
interaction potential, so thatminimizers exist, we also show that minimizers converge tomin-
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imizers; see Theorem 4.5. For m ≥ 2 and semiconvex potentials V ,W ∈ C2(Rd), we show
that the gradient flows of the regularized energies Em

ε are well-posed and are characterized
by solutions to the partial differential equation

∂tρ = ∇ · ((∇V+∇W ∗ ρ)ρ)+∇ · [ρ (∇ϕε ∗
(

(ϕε ∗ ρ)m−2ρ
)+(ϕε ∗ ρ)m−2(∇ϕε ∗ ρ)

)]

.

(8)

Under sufficient regularity conditions, we prove that solutions of the regularized gradient
flows converge to solutions of Eq. (1); see Theorem 5.8. When m = 2 and the initial datum
has bounded entropy, we show that these regularity conditions automatically hold, thus gen-
eralizing Lions andMas-Gallic’s result for the porous medium equation on bounded domains
to the full Eq. (1) on all of Rd ; see Corollary 5.9 and [60, Theorem 2].

For this regularized Eq. (8), particles do remain particles; see Corollary 5.5. Consequently,
our numerical blob method for diffusion consists of taking a particle approximation for (8).
We conclude by showing that, under sufficient regularity conditions, our blob method’s
particle solutions converge to exact solutions of (1); see Theorem 6.1. We then give several
numerical examples illustrating the rate of convergence of our method and its qualitative
properties.

A key advantage of our approach is that, by regularizing the energy functional and not the
flux, we preserve the problem’s gradient flow structure. Still, at first glance, our regularization
of the energy (6) may seem less natural than other potential choices. For example, one could
instead consider the following more symmetric regularization

Um
ε (ρ) := Fm(ϕε ∗ ρ) =

⎧

⎪
⎨

⎪
⎩

∫

(ϕε ∗ ρ) log(ϕε ∗ ρ) dLd for m = 1,
∫

(ϕε ∗ ρ)m

m − 1
dLd for m > 1,

for more general nonlinear diffusion,

Uε(ρ) =
∫

U (ϕε ∗ ρ) dLd , U : [0,∞) → R.

Although studying the above regularization is not without interest, we focus our attention on
the regularization in (6) and (7) for numerical reasons. Indeed, computing the first variation
density of Uε gives

δUε

δρ
= ϕε ∗ (U ′ ◦ (ϕε ∗ ρ)),

as compared to

δFε

δρ
= ϕε ∗ (F ′ ◦ (ϕε ∗ ρ)ρ)+ (ϕε ∗ ρ)F ′ ◦ (ϕε ∗ ρ)

forFε. In the first case, one can see that replacing ρ by a sum of Diracmasses still requires the
computation of an integral convolution with ϕε . Indeed, if ρ = ∑N

i=1 δxi mi , where (xi )Ni=1
are N particles in R

d with masses mi > 0, then, for all x ∈ R
d ,

δUε

δρ
(x) = ϕε ∗

[

U ′
(

N
∑

i=1
ϕε(x − xi )mi

)]

=
∫

Rd
ϕε(x − y)

[

U ′
(

N
∑

i=1
ϕε(y − xi )mi

)]

dy,

which does not allow for a complete discretization of the integrals. On the contrary, in the
second case, all convolutions involve ρ, so a similar computation (as it can be found in the
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proof of Corollary 5.5) shows that they reduce to finite sums, which are numerically less
costly.

Another advantage of our approach, in the m = 2 case, is that our regularization of the
energy can naturally be interpreted as an approximation of the porous medium equation by
a very localized nonlocal interaction potential. In this way, our proof of the convergence of
the associated particle method provides a theoretical underpinning to approximations of this
kind in the computational math and swarming literature [57,59]. Further advantages our blob
method include the ease with which it may be combined with particle methods for interaction
and drift potentials, its simplicity in any dimension, and the good numerical performance we
observe for a wide choice of interaction and drift potentials.

Our paper is organized as follows. In Sect. 2, we collect preliminary results concerning the
regularization of measures via convolution with a mollifier, including a mollifier exchange
lemma (Lemma 2.2), and relevant background on Wasserstein gradient flow and weak con-
vergence of measures. In Sect. 3, we prove several results on the general regularized energies
(7), which are of a novel form from the perspective of Wasserstein gradient flow theory,
combining aspects of the well-known interaction and internal energies. We show that these
regularized energies are semiconvex and differentiable in the Wasserstein metric and char-
acterize their subdifferential with respect to this structure; see Propositions 3.10–3.12. In
Sect. 4, we prove that Fε �-converges to F as ε → 0 and that minimizers converge to mini-
mizers, when in the presence of a confining drift or interaction term; see Theorems 4.1 and
4.5 . With this �-convergence in hand, in Sect. 5 we then turn to the question of convergence
of gradient flows, restricting to the case m ≥ 2. Using the framework introduced by Sandier
and Serfaty [76,78], we prove that, under sufficient regularity assumptions, gradient flows of
the regularized energies converge as ε → 0 to gradient flows of the unregularized energy,
recovering a generalization of Lions and Mas-Gallic’s results when m = 2; see Theorem 5.8
andCorollary 5.9. Finally, in Sect. 6, we prove the convergence of our numerical blobmethod,
under sufficient regularity assumptions, when the initial particle spacing h scales with the
regularization like h = o(ε); see Theorem 6.1.

We close with several numerical examples, in one and two dimensions, analyzing the rate
of convergence to exact solutionswith respect to the 2-Wassersteinmetric, L1-norm, and L∞-
norm and illustrating qualitative properties of the method, including asymptotic behavior of
the Fokker–Planck equation and critical mass of the two-dimensional Keller–Segel equation;
see Sect. 6.3. In particular, for the heat equation and porous medium equations (V = W = 0,
m = 1, 2, 3), we observe that the 2-Wasserstein error depends linearly on the grid spacing
h ∼ N−1/d for m = 1, 2, 3, while the L1-norm depends quadratically on the grid spacing
for m = 1, 2 and superlinearly for m = 3. We apply our method to study long time behavior
of the nonlinear Fokker–Planck equation (V = |·|2 /2, W = 0, m = 2), showing that the
blob method accurately captures convergence to the unique steady state. Finally, we conduct
a detailed numerical study of equations of Keller–Segel type, including a one-dimensional
variant (V = 0,W = 2χ log |·| , χ > 0,m = 1, 2) and the original two-dimensional
equation (V = 0, W = �−1, m = 1). The one-dimensional equation has a critical mass
1, and the two-dimensional equation has critical mass 8π , at which point the concentration
effects from the nonlocal interaction term balance with linear diffusion (m = 1) [13,41]. We
show that the same notion of criticality is present in our numerical solutions and demonstrate
convergence of the critical mass as the grid spacing h and regularization ε are refined.

There are several directions for future work. Our convergence theorem form ≥ 2 requires
additional regularity assumptions, which we are only able to remove in the case m = 2
when the initial data has bounded entropy. In the case of m > 2 or more general initial
data, it remains an open question how to control certain nonlocal norms of the regularized
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energies, which play an important role in our convergence result; see Theorem 5.8. Formally,
we expect these to behave as approximations of the BV -norm of ρm , which should remain
bounded by the gradient flow structure; see Eqs. (24) and (25). When 1 ≤ m < 2, it is
not clear how to use these nonlocal norms to get the desired convergence result or whether
an entirely different approach is needed. Perhaps related to these questions is the fact that
our estimate on the semiconvexity of the regularized energies (6) deteriorates as ε → 0,
while we expect that the semiconvexity should not deteriorate along smooth geodesics; see
Proposition 3.11. Finally, while our results show convergence of the blobmethod for diffusive
Wasserstein gradient flows, they do not quantify the rate of convergence in terms of h and
ε. In particular, a theoretical result on the optimal scaling relation between h and ε remains
open, though we observe good numerical performance for ε = h1−p , 0 < p � 1. In a
less technical direction, we foresee a use of the presented ideas in conjunction with splitting
schemes for certain nonlinear kinetic equations [1,20], as well as in the fluids [49], since
our numerical results demonstrate comparable rates of convergence to the particle strength
exchange method, which has already gained attention in these contexts [40].

2 Preliminaries

2.1 Basic notation

For any r > 0 and x ∈ R
d we denote the open ball of center x and radius r by Br (x). Given

a set S ⊂ R
d , we write 1S : Rd → {0, 1} for the indicator function of S, i.e., 1S(x) = 1

for x ∈ S and 1S(x) = 0 otherwise. We say a function A : Rd → R has at most quadratic
growth if there exist c0, c1 > 0 so that |A(x)| ≤ c0 + c1|x |2 for all x ∈ R

d .
LetP(Rd) denote the set of Borel probabilitymeasures onRd , and for, any p ∈ N,Pp(R

d)

denotes elements of P(Rd) with finite pth moment, Mp(R
d) := ∫

Rd |x |p dμ(x) < +∞.
We write Ld for the d-dimensional Lebesgue measure, and for given μ ∈ P(Rd), we write
μ � Ld if μ is absolutely continuous with respect to the Lebesgue measure. Often we use
the same symbol for both a probability measure and its Lebesgue density, whenever the latter
exists. We let L p(μ;Rd) denote the Lebesgue space of functions with pth power integrable
against μ.

Given σ a finite, signed Borel measure on Rd , we denote its variation by |σ |. For a Borel
set E ⊂ R

d we write σ(E) for the σ -measure of set E . For a Borel map T : Rd → R
d and

μ ∈ P(Rd), we write T#μ for the push-forward ofμ through T . We let id : Rd → R
d denote

the identity map on R
d and define (id, T ) : Rd → R

d × R
d by (id, T )(x) = (x, T (x)) for

all x ∈ R
d . For a sequence (μn)n ⊂ P(Rd) and some μ ∈ P(Rd), we write μn

∗
⇀ μ if

(μn)n converges toμ in the weak-∗ topology of probability measures, i.e., in the duality with
bounded continuous functions.

2.2 Convolution of measures

A key aspect of our approach is the regularization of the energy (2) via convolution with a
mollifier. In this section, we collect some elementary results on the convolution of probability
measures, including a mollifier exchange lemma, Lemma 2.2.
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For any μ ∈ P(Rd) and measurable function φ, the convolution of φ with μ is given by

φ ∗ μ(x) =
∫

Rd
φ(x − y) dμ(y) for all x ∈ R

d ,

whenever the integral converges. We consider mollifiers ϕ satisfying the following assump-
tion.

Assumption 2.1 (mollifier) Let ϕ = ζ ∗ ζ , where ζ ∈ C2(Rd ; [0,∞)) is even, ‖ζ‖L1(Rd ) =
1, and

ζ(x) ≤ Cζ |x |−q , |∇ζ(x)| ≤ C ′ζ |x |−q
′

for some Cζ ,C
′
ζ > 0 and q > d + 1, q ′ > d.

This assumption is satisfiedbybothGaussians and smooth functionswith compact support.
Assumption 2.1 also ensures that ϕ has finite first moment. For any ε > 0, we write

ϕε = ε−dϕ(·/ε) and ζε = ε−dζ(·/ε).
Throughout, we use the fact that the definition of convolution allows us to move mollifiers
from the measure to the integrand. In particular, for any φ bounded below and ψ ∈ L1(Rd)

even,
∫

Rd
φ d(ψ ∗ μ) =

∫

Rd
φ ∗ ψ dμ.

Likewise, the technical assumption that ϕ = ζ ∗ ζ , and therefore that ϕε = ζε ∗ ζε , allows
us to regularize integrands involving the mollifier ϕε; indeed, the following lemma provides
sufficient conditions for moving functions in and out convolutions with mollifiers within
integrals. (See also [60] for a similar result.) This is an essential component in the proofs
of both main results, Theorems 4.1 and 5.8 , on the the �-convergence of the regularized
energies and the convergence of the corresponding gradient flows. See “Appendix A” for the
proof of this lemma.

Lemma 2.2 (mollifier exchange lemma) Let f : Rd → R be Lipschitz continuous with
Lipschitz constant L f > 0, and let σ and ν be finite, signed Borel measures on Rd . There is
p = p(q, d) > 0 so that

∣

∣

∣

∣

∫

ζε ∗ ( f ν) dσ −
∫

(ζε ∗ ν) f dσ

∣

∣

∣

∣

≤ ε pL f

(∫

(ζε ∗ |ν|) d|σ | + Cζ |σ |(Rd)|ν|(Rd)

)

for all ε > 0.

We conclude this section with a lemma stating that if a sequence of measures converges
in the weak-∗ topology of P(Rd), then the mollified sequence converges to the same limit.
We refer the reader to “Appendix A” for the proof.

Lemma 2.3 Letμε be a sequence inP(Rd) such thatμε

∗
⇀ μ as ε → 0 for someμ ∈ P(Rd).

Then ϕε ∗ με

∗
⇀ μ.

2.3 Optimal transport,Wasserstein metric, and gradient flows

We now describe basic facts about optimal transport, including the Wasserstein metric and
associated gradient flows. (See also [2,3,5,77,82,83] for further background and more details
on the definitions and remarks found in this section.)
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For μ, ν ∈ P(Rd), we denote the set of transport plans from μ to ν by

�(μ, ν) := {γ ∈ P(Rd × R
d) | π1

#γ = μ, π2
#γ = ν},

where π1, π2 : Rd×R
d → R

d are the projections ofRd×R
d onto the first and second copy

of Rd , respectively. The Wasserstein distance W2(μ, ν) between two probability measures
μ, ν ∈ P2(R

d) is given by

W2(μ, ν) = min
γ∈�(μ,ν)

(∫

Rd×Rd
|x − y|2dγ (x, y)

)1/2

, (9)

and a transport plan γo is optimal if it attains theminimum in (9).We denote the set of optimal
transport plans by �o(μ, ν). If μ is absolutely continuous with respect to the Lebesgue
measure, then there is a unique optimal transport plan γo, and

γo = (id, To)#μ,

for a Borel measurable function To : Rd → R
d . To is unique up to sets of μ-measure zero

and is known as the optimal transport map from μ to ν. Convergence with respect to the
Wasserstein metric is stronger than weak-∗ convergence. In particular, if (μn)n ⊂ P2(R

d)

and μ ∈ P2(R
d), then

W2(μn, μ) → 0 as n →∞ ⇐⇒
(

μn
∗
⇀ μ and M2(μn)→ M2(μ) as n →∞

)

.

In order to define Wasserstein gradient flows, we will require the following notion of
regularity in time with respect to the Wasserstein metric.

Definition 2.4 (absolutely continuous) μ ∈ AC2
loc((0,∞); P2(Rd)) if there is f ∈

L2
loc((0,∞)) so that

W2(μ(t), μ(s)) ≤
∫ t

s
f (r) dr for all t, s ∈ (0,∞)with s ≤ t .

Along such curves, we have a notion of metric derivative.

Definition 2.5 (metric derivative) Given μ ∈ AC2
loc((0,∞); P2(Rd)), its metric derivative

is

|μ′|(t) := lim
s→t

W2(μ(t), μ(s))

|t − s|
An important class of curves in the Wasserstein metric are the (constant speed) geodesics.

Given μ0, μ1 ∈ P2(R
d), geodesics connecting μ0 to μ1 are of the form

μα = ((1− α)π1 + απ2)#γo for α ∈ [0, 1],γo ∈ �o(μ, ν).

If γo is induced by a map To, then

μα = ((1− α)id+ αTo)#μ0.

More generally, given μ1, μ2, μ3 ∈ P2(R
d), a generalized geodesic connecting μ2 to μ3

with base μ1 is given by

μ2→3
α = ((1− α)π2 + απ3)

# γ for α ∈ [0, 1] and γ ∈ P(Rd × R
d × R

d )

× such that π1,2
#γ ∈ �o(μ1, μ2) and π1,3

#γ ∈ �o(μ1, μ3).

(10)

123



53 Page 10 of 53 J. A. Carrillo et al.

with π1,i : Rd ×R
d ×R

d → R
d ×R

d the projection of onto the first and i th copies of Rd .
When the base μ1 coincides with one of the endpoints μ2 or μ3, generalized geodesics are
geodesics.

A key property for the uniqueness and stability of Wasserstein gradient flows is that the
energies are convex, or more generally semiconvex, along generalized geodesics.

Definition 2.6 (semiconvexity along generalized geodesics) We say a functional G : P2(R
d)

→ (−∞,∞] is semiconvex along generalized geodesics if there is λ ∈ R such that for all
μ1, μ2, μ3 ∈ P2(R

d) there exists a generalized geodesic connecting μ2 to μ3 with base μ1

such that

G(μ2→3
α ) ≤ (1− α)G(μ2)+ αG(μ3)− λ(1− α)α

2
W 2

2,γ (μ2, μ3) for all α ∈ [0, 1],
where

W 2
2,γ (μ2, μ3) =

∫

Rd×Rd×Rd
|y − z|2 dγ (x, y, z).

For any subset X ⊂ P(Rd) and functional G : X → (−∞,∞], we denote the domain
of G by D(G) = {μ ∈ X | G(μ) < +∞}, and we say that G is proper if D(G) �= ∅. As
soon as a functional is proper and lower semicontinuous with respect to the weak-* topology,
we may define its subdifferential; see [3, Definition 10.3.1 and Eq. 10.3.12]. Following the
approach in [24], the notion of subdifferential we use in this paper is, in fact, the following
reduced one.

Definition 2.7 (subdifferential) Given G : P2(R
d) → (−∞,∞] proper and lower semi-

continuous, μ ∈ D(G), and ξ : Rd → R
d with ξ ∈ L2(μ;Rd), then ξ belongs to the

subdifferential of G at μ, written ξ ∈ ∂G(μ), if as ν
W2−→ μ,

G(ν)− G(μ) ≥ inf
γ∈�0(μ,ν)

∫

Rd×Rd
〈ξ(x), y − x〉 dγ (x, y)+ o(W2(μ, ν)).

The Wasserstein metric is formally Riemannian, and we may define the tangent space as
follows.

Definition 2.8 Let μ ∈ P2(R
d). The tangent space at μ is

Tanμ P2(R
d) = {∇φ | φ ∈ C∞c (Rd)

}

,

where the closure is taken in L2(μ;Rd).

We now turn to the definition of a gradient flow in the Wasserstein metric (c.f. [3, Propo-
sition 8.3.1, Definition 11.1.1]).

Definition 2.9 (gradient flow) Suppose G : P2(R
d) → R ∪ {+∞} is proper and lower

semicontinuous. A curveμ ∈ AC2
loc((0,+∞);P2(R

d)) is a gradient flow of G if there exists
a velocity vector field v : (0,∞)× R

d → R
d with −v(t) ∈ ∂G(μ(t)) ∩ Tanμ(t) P2(R

d) for
almost every t > 0 such that μ is a weak solution of the continuity equation

∂tμ(t, x)+∇ · (v(t, x)μ(t, x)) = 0;
i.e., μ is a solution to the continuity equation in duality with C∞c (Rd).

We close this section with the following definition of the Wasserstein local slope.
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Definition 2.10 (local slope) Given G : P2(R
d) → (−∞,∞], its local slope is

|∂G|(μ) = lim sup
μ→ν

(G(μ)− G(ν))+
W2(μ, ν)

for all μ ∈ D(G),

where the subscript + denotes the positive part.

Remark 2.11 When the functional G in Definition 2.9 is in addition semiconvex along
geodesics the local slope |∂G| is a strong upper gradient for G. In this case a gradient flow of
G is characterized as being a 2-curve of maximal slope with respect to |∂G|; see [3, Theorem
11.1.3].

3 Regularized internal energies

The foundation of our blob method is the regularization of the internal energyF via convolu-
tion with a mollifier. This allows us to preserve the gradient flow structure and approximate
our original partial differential equation (1) by a sequence of equations for which particles
do remain particles. In this section, we consider several fundamental properties of the regu-
larized internal energies Fε, including convexity, lower semicontinuity, and differentiability.
In what follows, we will suppose that our internal energies satisfy the following assumption.

Assumption 3.1 (internal energies) Suppose F ∈ C2(0,+∞) satisfies lims→+∞ F(s) =
+∞ and either F is boundedbelowor lim infs→0 F(s)/sβ > −∞ for someβ > −2/(d+2).
Suppose further that U (s) = sF(s) is convex, bounded below, and lims→0U (s) = 0.

Thanks to this assumption we can define the internal energy corresponding to F by

F(ρ) =
{
∫

F(ρ) dρ if ρ � Ld ,

+∞ otherwise.

If F is bounded below, this is well-defined on all of P(Rd). If lim infs→0 F(s)/sβ > −∞
for some β > −2/(d + 2), this is well-defined on P2(R

d); see [3, Example 9.3.6].

Remark 3.2 (nondecreasing) Assumption 3.1 implies that F is nondecreasing. Indeed, by the
convexity of U (s) and the fact that lims→0 sF(s) = 0,

sF(s) =
∫ s

0
U ′(r) dr ≤ sU ′(s) = s2F ′(s)+ sF(s) for all s ∈ (0,∞),

which leads to F ′(s) ≥ 0 for all s ∈ (0,∞).

Our assumption does not ensure that F is convex along Wasserstein geodesics, unless F
is convex.

Remark 3.3 (McCann’s convexity condition)McCann’s condition [65] on the internal density
U for the convexity of the internal energy F can be stated on the function F instead: the
function s �→ F(s−d) is nonincreasing and convex on (0,∞), i.e.,

F ′(s) ≥ 0 and (d + 1)F ′(s)+ dsF ′′(s) ≥ 0 for all s ∈ (0,∞),

which, by Remark 3.2, holds when for example F is convex and satisfies Assumption 3.1.
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We regularize the internal energies by convolution with a mollifier.

Definition 3.4 (regularized internal energies) Given F : (0,∞) → R satisfying Assump-
tion 3.1, we define, for all μ ∈ P(Rd), the regularized internal energies by

Fε(μ) =
∫

F(ϕε ∗ μ) dμ for all ε > 0.

Note that, for all μ ∈ P(Rd) and ε > 0, Fε(μ) < F(‖ϕε‖L∞(Rd )) <∞.
An important class of internal energies satisfying Assumption 3.1 are given by the (neg-

ative) entropy and Rényi entropies.

Definition 3.5 The entropy and Rényi entropies, and their regularizations, are given by

Fm(ρ) =
∫

Fm(ρ) dρ,

Fm
ε (μ) =

∫

Fm(ϕε ∗ μ) dμ, for Fm(s) =
{

log s for m = 1,

sm−1/(m − 1) for m > 1.

Note that, as per our observation just below the definition ofF , the entropyF1 is well-defined
on P2(R

d) and the Rényi entropies (Fm,m > 1) are well-defined on all of P(Rd). Also note
that the regularized entropies (Fm

ε ,m ≥ 1, ε > 0) are well-defined on all of P(Rd).
In order to approximate solutions of Eq. (1), we will consider combinations of the above

regularized internal energies with potential and interaction energies.

Definition 3.6 (regularized energies) Let V ,W : Rd → (−∞,∞] be proper and lower
semicontinuous. Suppose further that W is locally integrable. For all μ ∈ P(Rd) define

Eε(μ) =
∫

V dμ+ 1

2

∫

(W ∗ μ) dμ+ Fε(μ) for all ε > 0.

When F = Fm for some m ≥ 1, then we denote E by Em and Eε by Em
ε .

The regularized internal energy in Definition 3.4 incorporate a blend of interaction and
internal phenomena, through the convolution with the mollifier, or potential, ϕε and the
composition with the function F . To our knowledge, this is a novel form of functional on the
space of probability measures. We now describe some of its basic properties: energy bounds
and lower semicontinuity, when F is the logarithm or a power, and differentiability, convexity
and subdifferential characterization when F is convex. For the existence and uniqueness of
gradient flows associated to this regularized energy, see Sect. 5.

Remark 3.7 Although the regularized energy in Definition 3.4 is of a novel form, it was
noticed in [71, Proposition 6.9] that a previous particle method for diffusive gradient flows
leads to a similar regularized internal energy after space discretization [25,30]. The essential
difference between these two methods stands in the choice of the mollifier, which, instead of
satisfying 2.1, is a very singular potential.

We begin with inequalities relating the regularized internal energies to the unregularized
energies. See “Appendix A” for the proof, which is a consequence of Jensen’s inequality and
a Carleman-type estimate on the lower bound of the entropy [30, Lemma 4.1].
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Proposition 3.8 Let ε > 0. If m = 1, suppose μ ∈ P2(R
d), and if m > 1, suppose μ ∈

P(Rd). Then,

Fm(μ)+ Cε ≥ Fm
ε (μ) ≥ Fm(ζε ∗ μ) for 1 ≤ m ≤ 2, (11)

Fm
ε (μ) ≤ Fm(ζε ∗ μ) for m ≥ 2. (12)

where Cε = Cε(m, μ) → 0 as ε → 0. Furthermore, for all δ > 0, we have

Fm
ε (μ) ≥

{

− (2π/δ)d/2 − 2δ(M2(μ)+ ε2M2(ζ )) if m = 1,

0 if m > 1.
(13)

For all ε > 0, the regularized entropies are lower semicontinuous with respect to weak-*
convergence (m > 1) and Wasserstein convergence (m = 1). For m > 2, we prove this
using a theorem of Ambrosio, Gigli, and Savaré on the convergence of maps with respect to
varying measures; see Proposition B.2. For 1 < m ≤ 2, this is a consequence of Jensen’s
inequality. For m = 1, we apply both Jensen’s inequality and a version of Fatou’s lemma
for varying measures; see Lemma B.3. In this case, we also require that the mollifier ϕ is a
Gaussian, so that we can get the bound from below required by Fatou’s lemma. We refer the
reader to “Appendix A” for the proof.

Proposition 3.9 (lower semicontinuity) Let ε > 0. Then

(i) Fm
ε is lower semicontinuous with respect to weak-∗ convergence inP(Rd) for all m > 1;

(ii) if ϕ is a Gaussian, thenF1
ε is lower semicontinuous with respect to the quadratic Wasser-

stein convergence in P2(R
d).

When F is convex, the regularized internal energies are differentiable along generalized
geodesics. The proof relies on the fact that F is differentiable andϕε ∈ C2(Rd), with bounded
Hessian; see “Appendix A”.

Proposition 3.10 (differentiability) Let F satisfy Assumption 3.1 and be convex. Given
μ1, μ2, μ3 ∈ P2(R

d) and γ ∈ P2(R
d × R

d × R
d) with π i

#γ = μi , let μ2→3
α =

(

(1− α)π2 + απ3
)

# γ for α ∈ [0, 1]. Then
d

dα
Fε(μ

2→3
α )

∣

∣

∣

α=0
=
∫∫∫ ∫∫∫

F ′ (ϕε ∗ μ2(y))∇ϕε(y − v) · (z − w − (y − v)) dγ (u, v, w) dγ (x, y, z).
(14)

A key consequence of the preceding proposition is that the regularized energies are semi-
convex along generalized geodesics, as we now show.

Proposition 3.11 (convexity) Suppose F satisfies Assumption 3.1 and is convex. Then Fε is
λF -convex along generalized geodesics, where

λF = −2‖D2ϕε‖L∞(Rd )F
′(‖ϕε‖L∞(Rd )). (15)

Proof. Let (μ2→3
α )α∈[0,1] be a generalized geodesic connecting two probability measures

μ2, μ3 ∈ P2(R
d) with base μ1 ∈ P2(R

d); see (10).
We have, using the above-the-tangent inequality for convex functions,

Fε(μ3)− Fε(μ2) =
∫∫∫

(F(ϕε ∗ μ3)(y)− F(ϕε ∗ μ2)(z)) dγ (x, y, z)

≥
∫∫∫

F ′(ϕε ∗ μ2(y)) (ϕε ∗ μ3(z)− ϕε ∗ μ2(y)) dγ (x, y, z)
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=
∫∫∫ ∫∫∫

F ′(ϕε ∗ μ2(y))(ϕε(z − w)

− ϕε(y − v)) dγ (u, v, w) dγ (x, y, z).

Therefore, by Proposition 3.10,

Fε(μ3)− Fε(μ2)− d

dα
Fε(μ

2→3
α )

∣

∣

∣

α=0

≥
∫∫∫ ∫∫∫

F ′(ϕε ∗ μ2(y))

× [ϕε(z − w)− ϕε(y − v)− ∇ϕε(y − v) · (z − w − (y − v))] dγ (u, v, w) dγ (x, y, z)

≥ − ‖D
2ϕε‖L∞(Rd )

2

∫∫∫ ∫∫∫

F ′(ϕε ∗ μ2(y))|z − w − (y − v)|2 dγ (u, v, w) dγ (x, y, z)

≥ − ‖D
2ϕε‖L∞(Rd )F

′(‖ϕε‖L∞(Rd ))

2

∫∫∫ ∫∫∫

|z − w − (y − v)|2 dγ (u, v, w) dγ (x, y, z)

≥ − 2‖D2ϕε‖L∞(Rd )F
′(‖ϕε‖L∞(Rd ))W

2
2,γ (μ2, μ3),

which gives the result. ��
We now use the previous results to characterize the subdifferential of the regularized

internal energy. The structure of argument is classical (c.f. [3,24,55]), but due to the novel
form of our regularized energies, we include the proof in “Appendix A”.

Proposition 3.12 (subdifferential characterization) Suppose F satisfies Assumption 3.1 and
is convex. Let ε > 0 and μ ∈ D(Fε). Then

v ∈ ∂Fε(μ) ∩ Tanμ P2(R
d) ⇐⇒ v = ∇ δFε

δμ
,

where

δFε

δμ
= ϕε ∗

(

F ′ ◦ (ϕε ∗ μ)μ
)+ (F ′ ◦ (ϕε ∗ μ)

)

ϕε ∗ μ, μ− almost everywhere. (16)

In particular, we have |∂Fε|(μ) =
∥

∥

∥∇ δFε

δμ

∥

∥

∥

L2(μ;Rd )
.

As a consequence of this characterization of the subdifferential, we obtain the analogous
result for the full energy Eε , as in Definition 3.6. See “Appendix A” for the proof.

Corollary 3.13 Suppose F satisfies Assumption 3.1 and is convex. Let ε > 0 and μ ∈ D(Eε).
Suppose V ,W ∈ C1(Rd) are semiconvex, with at most quadratic growth, and W is even.
Then

v ∈ ∂Eε(μ) ∩ Tanμ P2(R
d) ⇐⇒ v = ∇ δEε

δμ
,

where

δEε

δμ
= ϕε ∗

(

F ′ ◦ (ϕε ∗ μ)μ
)

+ (F ′ ◦ (ϕε ∗ μ)
)

ϕε ∗ μ+ V +W ∗ μ, μ-almost everywhere.

In particular, we have |∂Eε|(μ) =
∥

∥

∥∇ δEε

δμ

∥

∥

∥

L2(μ;Rd )
.
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4 0-convergence of regularized internal energies

We now turn to the convergence of the regularized energies and, when in the presence of
confining drift or interaction terms, the corresponding convergence of their minimizers. In
this section, and for the remainder of the work, we consider regularized entropies and Rényi
entropies of the form Fm

ε for m ≥ 1. We begin by showing that Fm
ε �-converges to F as

ε → 0 with respect to the weak-∗ topology.

Theorem 4.1 (Fε �-converges to F) If m = 1, consider (με)ε ⊂ P2(R
d) and μ ∈ P2(R

d),
and if m > 1, consider (με)ε ⊂ P(Rd) and μ ∈ P(Rd).

(i) If με

∗
⇀ μ, we have lim infε→0 Fm

ε (με) ≥ Fm(μ).
(ii) We have lim supε→0 Fm

ε (μ) ≤ Fm(μ).

Proof. We begin by showing the result for 1 ≤ m ≤ 2, in which case the function F is
concave. We first show part (i). By Proposition 3.8, for all ε > 0,

Fm
ε (με) ≥ Fm(ζε ∗ με).

By Lemma 2.3, με

∗
⇀ μ implies ζε ∗ με

∗
⇀ μ. Therefore, by the lower semicontinuity of

Fm with respect to weak-∗ convergence [3, Remark 9.3.8],

lim inf
ε→0

Fm
ε (με) ≥ lim inf

ε→0
Fm(ζε ∗ με) ≥ Fm(μ),

which gives the result. We now turn to part (ii). Again, by Proposition 3.8, for all ε > 0,

Fm(μ)+ Cε ≥ Fm
ε (μ),

where Cε → 0 as ε → 0. Therefore, lim supε→0 Fm
ε (μ) ≤ Fm(μ).

We now consider the case when m > 2. Part (ii) follows quickly: by Proposition 3.8,
Young’s convolution inequality, and the fact that ‖ζε‖L1(Rd ) = 1, for all ε > 0 we have

Fm
ε (μ) ≤ Fm(ζε ∗ μ) = 1

m−1‖ζε ∗ μ‖mLm (Rd )

≤ 1
m−1‖ζε‖mL1(Rd )

‖μ‖mLm (Rd )
= 1

m−1‖μ‖mLm (Rd )
= Fm(μ).

Taking the supremum limit as ε → 0 then gives the result. Let us prove part (i). Without loss
of generality, we may suppose that lim infε→0 Fm

ε (με) is finite. Furthermore, there exists a
positive sequence (εn)n such that εn → 0 and limn→+∞ Fm

εn
(μεn ) = lim infε→0 Fm

ε (με). In
particular, there exists C > 0 for which Fm

εn
(μεn ) < C for all n ∈ N. By Jensen’s inequality

for the convex function x �→ xm−1 and the fact that ζε ∗ ζε = ϕε for all ε > 0,

(m − 1)Fm
ε (με) =

∫

(ϕε ∗ με)
m−1 dμε ≥

(∫

ϕε ∗ με dμε

)m−1

=
(∫

Rd
|ζε ∗ με(x)|2 dx

)m−1
.

Thus, since Fm
εn

(μεn ) < C for all n ∈ N, we have ‖ζεn ∗ μεn‖L2(Rd ) < C ′ := (C(m −
1))1/2(m−1). We now use this bound on the L2-norm of ζεn ∗μεn to deduce a stronger notion
of convergence of ζεn ∗ μεn to μ. First, since (μεn )n converges weakly-∗ to μ as n → ∞,
Lemma 2.3 ensures that (ζεn ∗ μεn − μεn )n converges weakly-∗ to 0. Since the L2-norm is
lower semicontinuous with respect to weak-∗ convergence [65, Lemma 3.4], we have

C ′ ≥ lim inf
n→∞ ‖ζεn ∗ μεn‖L2(Rd ) ≥ ‖μ‖L2(Rd ),
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so thatμ ∈ L2(Rd). Furthermore, up to another subsequence,wemay assume that (ζεn ∗μεn )n

converges weakly in L2. Also, since ζεn ∗ μεn

∗
⇀ μ, for all f ∈ C∞c (Rd) we have

lim
n→∞

∫

f dζεn ∗ μεn =
∫

f dμ,

so (ζεn ∗ μεn )n converges weakly in L2 to μ. By the Banach–Saks theorem (c.f. [73, Sect.
38]), up to taking a further subsequence of (ζεn ∗ μεn )n , the Cesàro mean (vk)k defined by

vk := 1

k

k
∑

i=1
ζεi ∗ μεi for all k ∈ N,

converges to μ strongly in L2. Finally, for any f ∈ C∞c (Rd), this ensures
∣

∣

∣

∣

∫

f (vk)
2 dLd −

∫

f μ2 dLd
∣

∣

∣

∣
≤
∫

| f ||vk − μ||vk + μ| dLd

≤ ‖ f ‖L∞(Rd )‖vk − μ‖L2(Rd )‖vk + μ‖L2(Rd ),

so that

lim
k→∞

∫

f (vk)
2 dLd =

∫

f μ2 dLd . (17)

We now use this stronger notion convergence to conclude our proof of part (i). Since m > 2
and

‖ϕεn ∗ μεn‖m−1Lm−1(μεn ;Rd )
= (m − 1)Fm

εn
(μεn ) < C for all n ∈ N,

by part (i) of Proposition B.2, up to another subsequence, there exists w ∈ L1(μ;Rd) so that
for all f ∈ C∞c (Rd),

lim
n→∞

∫

f (ϕεn ∗ μεn ) dμεn =
∫

f w dμ. (18)

Furthermore, recalling the definition of the regularized energy and applying [3, Theorem
5.4.4(ii)],

lim inf
ε→0

Fm
ε (με) = lim

n→∞Fm
εn

(μεn ) = lim
n→∞

1

m − 1

∫

(ϕεn ∗ μεn )
m−1 dμn

≥ 1

m − 1

∫

wm−1 dμ.

Therefore, to finish the proof, it suffices to show that w(x) ≥ μ(x) for μ-almost every
x ∈ R

d . By Lemma 2.2 and the fact that ζεn ∗ ζεn = ϕεn for all n ∈ N, there exists p > 0
and Cζ > 0 so that for all f ∈ C∞c (Rd),

∣

∣

∣

∣

∫

f (ϕεn ∗ μεn ) dμεn −
∫

f (ζεn ∗ μεn )
2 dLd

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

ζεn ∗ ( f μεn ) dζεn ∗ μεn −
∫

(ζεn ∗ μεn ) f dζεn ∗ μεn

∣

∣

∣

∣

≤ ε
p
n ‖∇ f ‖L∞(Rd )

(

‖(ζεn ∗ μεn )‖2L2(Rd )
+ Cζ

)
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Combining this with Eq. (18), we obtain

lim
n→∞

∫

f (ζεn ∗ μεn )
2 dLd =

∫

f w dμ. (19)

Finally, using Eq. (17) and the definition of (vk)k as a sequence of convex combinations of
the family {ζεi ∗ μεi }i∈{1,...,k}, for all f ∈ C∞c (Rd) with f ≥ 0 we have

∫

f μ2 dLd = lim
k→ ∞

∫

f (vk)
2 dLd = lim

k→∞

∫

Rd
f

(

1

k

k
∑

n=1
ζεn ∗ μεn (x)

)2

dx

≤ lim
k→∞

1

k

k
∑

n=1

∫

f
(

ζεn ∗ μεn

)2
dLd .

Since the limit in (19) exists, it coincides with its Cesàro mean on the right-hand side of the
above equation. Thus, for all f ∈ C∞c (Rd) with f ≥ 0,

∫

f μ2 dLd ≤
∫

f w dμ.

This gives w(x) ≥ μ(x) for μ-almost every x ∈ R
d , which completes the proof. ��

Now, we add a confining drift or interaction potential to our internal energies, so that
energy minimizers exist and we may apply the previous �-convergence result to conclude
thatminimizers converge tominimizers. For the remainder of the sectionwe consider energies
of the form Em

ε given in Definition 3.6, with the following additional assumptions on V and
W to ensure that the energy is confining.

Assumption 4.2 (confining assumptions) The potentials V and W are bounded below and
one of the following additional assumptions holds:

V has compact sublevel sets; (CV)

V (x) ≥ C0|x |2 + C1 for allx ∈ R
d for some C0 > 0,C1 ∈ R; (CV′)

V = 0 and W is radial satisfying lim|x |→∞W (x) = +∞. (CW)

Under these assumptions, the regularized energies Em
ε are lower semicontinuous with

respect to weak-∗ convergence (m > 1) andWasserstein convergence (m = 1), where for the
latter we assume ϕ is a Gaussian (c.f. Proposition 3.9, and [3, Lemma 5.1.7], [65, Lemma
3.4] and [79, Lemma 2.2]).

Remark 4.3 (tightness of sublevels) Assumptions (CV) and (CV′) ensure that the set {μ ∈
P(Rd) | ∫ V dμ ≤ C} is tight for all C > 0; c.f. [3, Remark 5.1.5]. Likewise, Assumption
(CW) on W ensures that the set {μ ∈ P(Rd) | ∫ W ∗ μ dμ ≤ C} is tight up to translations
for all C > 0; c.f. [79, Theorem 3.1].

We now prove existence of minimizers of Em
ε , for all ε > 0.

Proposition 4.4 Let ε > 0. For m > 1, if either Assumption (CV) or (CW) holds, then
minimizers of Em

ε over P(Rd) exist. For m = 1, if (CV′) holds and ϕ is a Gaussian, then
minimizers of E1

ε over P2(R
d) exist.
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Proof. First supposem > 1, so thatFε ≥ 0 and Em
ε is bounded below. ByRemark 4.3, if (CV)

holds, then any minimizing sequence of Em
ε has a subsequence that converges in the weak-∗

topology. Likewise, if (CW) holds, then any minimizing sequence of Em
ε has a subsequence

that, up to translation, converges in the weak-∗ topology. By lower semicontinuity of Em
ε , the

limits of minimizing sequences are minimizers of Em
ε .

Now, suppose m = 1. By Proposition 3.8, for all δ > 0 and μ ∈ P2(R
d),

Fm
ε (μ) ≥ −(2π/δ)d/2 − 2δ(M2(μ)+ ε2M2(ζ )),

Consequently, by the assumption in (CV′) and the fact that W is bounded below by, say,
C̃ ∈ R, we can choose δ = C0/2 and obtain

C̃ + C0M2(μ)+ C1 − (4π/C0)
d/2 − C0ε

2M2(ζ ) ≤ Em
ε (μ) for all μ ∈ P2(R

d), (20)

Hence any minimizing sequence (μn)n ⊂ P2(R
d) has uniformly bounded second moment.

Thus, (μn)n has a subsequence that converges in the weak-∗ topology to a limit with finite
second moment. By the lower semicontinuity of Em

ε the limit must be a minimizer of Em
ε . ��

Finally, we conclude that minimizers of the regularized energy converge to minimizers of
the unregularized energy.

Theorem 4.5 (minimizers converge to minimizers) Suppose m > 1. If Assumption (CV)
holds, then for any sequence (με)ε ⊂ P(Rd) such that με is a minimizer of Em

ε for all

ε > 0, we have, up to a subsequence, με

∗
⇀ μ, where μ is minimizes Em. Alternatively, if

Assumption (CW) holds, then we have με

∗
⇀ μ, up to a subsequence and translation, where

again μ minimizes Em.
Now suppose m = 1. If Assumption (CV′) holds and ϕ is a Gaussian, then for any

sequence (με)ε ⊂ P2(R
d) such that με is a minimizer of E1

ε for all ε > 0, we have, up to a

subsequence, με

∗
⇀ μ, where μ minimizes E1.

Proof. The proof is classical. We include it for completeness.
We only prove the result under Assumptions (CV)/(CV′) since the argument for (CW) is

analogous. For any ε > 0, since με is a minimizer of Em
ε we have that Em

ε (με) ≤ Em
ε (ν) for

all ν ∈ P(Rd) if m > 1, and for all ν ∈ P2(R
d) if m = 1. Taking the infimum limit of the

left-hand side and the supremum limit of the right-hand side, Theorem 4.1(ii) ensures that

lim inf
ε→0

Em
ε (με) ≤ lim sup

ε→0
Em

ε (ν) ≤ Em(ν). (21)

Since Em is proper there exists ν ∈ P(Rd) if m > 1 and ν ∈ P2(R
d) if m = 1 so that

the right-hand side is finite. Thus, up to a subsequence, we may assume that {Em
ε (με)}ε is

uniformly bounded. Whenm > 1, Fε(μ) ≥ 0 for all ε ≥ 0, and this implies that {∫ V dμε}ε
is uniformly bounded, so {με}ε is tight. When m = 1, the inequality in (20) ensures that
{M2(με)}ε is uniformly bounded, so again {με}ε is tight. Thus, up to a subsequence, (με)ε
converges weakly-∗ to a limit μ ∈ P(Rd) if m > 1 and μ ∈ P2(R

d) if m = 1. By
Theorem 4.1(i) and the inequality in (21), we obtain

Em(μ) ≤ lim inf
ε→0

Em
ε (με) ≤ Em(ν)

for all ν ∈ P(Rd) if m > 1 and for all ν ∈ P2(R
d) if m = 1. Therefore, μ is a minimizer of

Em . ��
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Remark 4.6 (convergenceofminimizers)One themaindifficulties for improving the topology
in which the convergence of the minimizers happen is that we do not control Lm-norms of the
regularized minimizing sequences due to the special form of our regularized energy. This is
the main reason we only get weak-∗ convergence in the previous result and the main obstacle
to improve results for the�-convergence of gradient flows, as we shall see in the next section.

5 0-convergence of gradient flows

Wenow consider gradient flows of the regularized energies Em
ε , as inDefinition 3.6, form ≥ 2

and prove that, under sufficient regularity assumptions, gradient flows of the regularized
energies converge to gradient flows of the unregularized energy as ε → 0. For simplicity of
notation, we often write Em

ε and Fm
ε for ε ≥ 0 when we refer jointly to the regularized and

unregularized energies.
We begin by showing that the gradient flows of the regularized energies are well-posed,

provided that V and W satisfy the following convexity and regularity assumptions.

Assumption 5.1 (convexity and regularity of V and W ) The potentials V ,W ∈ C1(Rd)

are semiconvex, with at most quadratic growth, and W is even. Furthermore, there exist
C0,C1 > 0 so

|W (x)|, |∇V (x)|, |∇W (x)| ≤ C0 + C1|x |m−1 for all x ∈ R
d .

Remark 5.2 (ω-convexity)More generally, our results naturally extend to drift and interaction
energies that are merely ω-convex; see [35]. However, given that the main interest of the
present work is approximation of diffusion, we prefer the simplicity of Assumption (5.1), as
it allows us to focus our attention on the regularized internal energy.

Proposition 5.3 Let ε ≥ 0 and m ≥ 2. Suppose Em
ε is as in Definition 3.6 and V and W

satisfy Assumption 5.1. Then, for any μ0 ∈ D(Em
ε ), there exists a unique gradient flow of Em

ε

with initial datum μ0.

Proof. It suffices to verify that Em
ε is proper, coercive, lower semicontinuous with respect to

2-Wasserstein convergence, and semiconvex along generalized geodesics; c.f. [3, Theorem
11.2.1]. (See also [3, Eq. (2.1.2b)] for the definition of coercive.) If ε > 0, then Fm

ε is finite
on all of P2(R

d), and if ε = 0, thenFm is proper. Thus, our assumptions on V andW ensure
that Em

ε is proper. Clearly Fm
ε is bounded below. Hence, since the semiconvexity of V and

W ensures that their negative parts have at most quadratic growth, Em
ε is coercive.

For ε > 0, Proposition 3.9 ensures that Fm
ε is lower semicontinuous with respect to

weak-∗ convergence, hence also 2-Wasserstein convergence. For ε = 0, the unregularized
internal energy Fm is also lower semicontinuous with respect to weak-∗ and 2-Wasserstein
convergence [65, Lemma 3.4]. Since V and W are lower semicontinuous and their negative
parts have at most quadratic growth, the associated potential and interaction energies are
lower semicontinuous with respect to 2-Wasserstein convergence [3, Lemma 5.1.7, Example
9.3.4]. Therefore, Em

ε is lower semicontinuous for all ε ≥ 0.
For ε > 0, Proposition 3.11 ensures that Fm

ε is semiconvex along generalized geodesics
inP2(R

d). For ε = 0, the unregularized internal energyFm is convex [65, Theorem 2.2]. For
V and W semiconvex, the corresponding drift

∫

V dμ and interaction (1/2)
∫

(W ∗ μ) dμ

energies are semiconvex [3, Proposition 9.3.2], [24, Remark 2.9]. Therefore, the resulting
regularized energy Em

ε is semiconvex. ��
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In the case ε = 0, gradient flows of the energies Em are characterized as solutions of the
partial differential equation (1); c.f. [3, Theorems 10.4.13 and 11.2.1], [24, Theorem 2.12].
Now, we show that gradient flows of the regularized energies Em

ε can also be characterized
as solutions of a partial differential equation.

Proposition 5.4 Let ε > 0 and m ≥ 2. Suppose Em
ε is as in Definition 3.6 and V and W

satisfy Assumption 5.1. Then, με ∈ AC2
loc((0,+∞);P2(R

d)) is the gradient flow of Em
ε if

and only if με is a weak solution of the continuity equation with velocity field

v = −∇V − ∇W ∗ με − ∇ϕε ∗
(

(ϕε ∗ με)
m−2με

)− (ϕε ∗ με)
m−2∇ϕε ∗ με. (22)

Moreover,
∫ T
0 ‖v(t)‖2

L2(με;Rd )
dt <∞ for all T > 0.

Proof. Suppose με ∈ AC2
loc((0,+∞);P2(R

d)) is the gradient flow of Em
ε . Then, by

Definition 2.9 and Corollary 3.13, με is a weak solution to the continuity equation with
velocity field (22). Conversely, suppose με is a weak solution to the continuity equa-
tion with velocity field (22). By Corollary 3.13, −v(t) ∈ ∂E(μ(t)) ∩ Tanμ(t) P2(R

d) for

almost every t ∈ (0,∞). Furthermore, since
∫ T
0 ‖v(t)‖2

L2(με;Rd )
dt < ∞ for all T > 0,

με ∈ AC2
loc((0,+∞);P2(R

d)) by [3, Theorem 8.3.1]. ��

Aconsequence of the previous proposition is that, for the regularized energies Em
ε , particles

remain particles, i.e. a solution of the gradient flow with initial datum given by a finite sum
of Dirac masses remains a sum of Dirac masses, and the evolution of the trajectories of the
particles is given by a system of ordinary differential equations.

Corollary 5.5 Let ε > 0 and m ≥ 2, and let V and W satisfy Assumption 5.1. Fix N ∈ N.
For i ∈ {1, . . . , N } := I , fix X0

i ∈ R
d and mi ≥ 0 satisfying

∑

i∈I mi = 1. Then the ODE
system
{

Ẋi (t) = −∇V (Xi (t))−∑ j∈I ∇W (Xi (t)−X j (t))m j−∇ δFm
ε

δμ
(� jδX j (t)m j ), t ∈ [0, T ],

Xi (0) = X0
i ,

(23)

is well-posed for all T > 0. Furthermore, με = ∑

i∈I δXi (·)mi belongs to AC2([0, T ];
P2(R

d)) and is the gradient flow of Em
ε with initial conditions με(0) :=∑i∈I δX0

i
mi .

Proof. To see that (23) is well-posed, first note that the function

(y1, . . . , yN ) �→ ∇ δFm
ε

δμ
(� jδy j m j )

=
∑

j∈I

⎛

⎝

(

∑

k∈I
ϕε(y j − yk)mk

)m−2
+
(

∑

k∈I
ϕε(yi − yk)mk

)m−2⎞

⎠∇ϕε(yi − y j )m j

is Lipschitz. Likewise, Assumption 5.1 ensures yi �→ ∇V (yi ) and yi �→ ∑

j∈I ∇W (yi −
y j ) are continuous and one-sided Lipschitz. Therefore, the ODE system (23) is well-posed
forward in time.

Now, suppose (Xi )
N
i=1 solves (23) with initial data (X0

i )
N
i=1 on an interval [0, T ], for some

fixed T . We abbreviate by vi = vi (X1, X2, . . . , XN ) the velocity field for Xi in (23). For
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any test function ϕ ∈ C∞c (Rd × (0, T )), the fundamental theorem of calculus ensures that,
for all i ∈ I ,

∫ T

0

(∇ϕ(Xi (t), t)Ẋi (t)+ ∂tϕ(Xi (t), t)
)

dt = −ϕ(Xi (0), 0).

Combining this with (23), we obtain
∫ T

0
∂tϕ(Xi (t), t) dt + ϕ(X0

i , 0)−
∫ T

0
∇ϕ(Xi (t), t)vi (t) dt = 0

Multiplying both sides bymi , summing over i , and takingμε =∑i∈I δXi (·)mi for t ∈ [0, T ]
gives

∫ T

0

∫

Rd
∂tϕ(t, x) dμε(t, x)dt +

∫

Rd
ϕ(0, x) dμε(0, x)

+
∫ T

0

∫

Rd
∇ϕ(t, x)v(t, x) dμε(t, x) dt = 0,

for v as in (22). Therefore, με is a weak solution of the continuity equation with velocity
field v. Furthermore, for all T > 0
∫ T

0
‖v(t)‖2L2(με;Rd )

dt ≤ 2 max
(i, j,k)∈I 3

[ ∫ T

0

(|∇V (Xi (t))|2 + |∇W (Xi (t)− X j (t))|2
)

dt

+
∫ T

0

(
∣

∣(ϕε(X j (t)− Xk(t))
m−2 + (ϕε(Xi (t)− Xk(t))

m−2∣
∣

2

× ∣∣∇ϕε(Xi (t)− X j (t))
∣

∣
2
)

dt

]

<∞,

by the continuity of ∇V , ∇W , and ϕε . Therefore, by Proposition 5.4, we conclude that
με ∈ AC2([0, T ];P2(R

d)) and με is the gradient flow of Em
ε . ��

We now turn to the �-convergence of the gradient flows of the regularized energies, using
the scheme introduced by Sandier–Serfaty [76] and then generalized by Serfaty [78], which
provides three sufficient conditions for concluding convergence. We will use the following
variant of Serfaty’s result, which allows for slightly weaker assumptions on the gradient flows
of the regularized energies, but follows from the same argument as Serfaty’s original result.
(See also Remark 2.11 on the correspondence betweenWasserstein gradient flows and curves
of maximal slope.)

Theorem 5.6 (c.f. [78, Theorem 2]) Let m ≥ 2. Suppose that, for all ε > 0, με belongs to
AC2([0, T ];P2(R

d)) and is a gradient flow of Em
ε with well-prepared initial data, i.e.,

με(0)
∗
⇀ μ(0), lim

ε→0
Em

ε (με(0)) = Em(μ(0)), μ(0) ∈ D(Em). (S0)

Suppose further that there exists a curve μ in P2(R
d) such that, for almost every t ∈ [0, T ],

με(t)
∗
⇀ μ(t) and

(S1) lim inf
ε→0

∫ t

0
|μ′ε|(s)2 ds ≥

∫ t

0
|μ′|(s)2 ds,

(S2) lim inf
ε→0

Em
ε (με(t)) ≥ Em(μ(t)),
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(S3) lim inf
ε→0

∫ t

0
|∂Em

ε |2(με(s)) ds ≥
∫ t

0
|∂Em |2(μ(s)) ds.

Then μ ∈ AC2([0, T ];P2(R
d)), and μ is a gradient flow of Em.

For simplicity of notation, in what follows we shall at times omit dependence on time
when referring to curves in the space of probability measures.

In order to apply Serfaty’s scheme in the present setting to obtain �-convergence of the
gradient flows, a key assumption is that the following quantity is bounded uniformly in ε > 0
along the gradient flows με of the regularized energies Em

ε :

‖με‖BVm
ε
:=
∫

Rd

∫

Rd
ζε(x − y) |(∇ζε ∗ pε)(x)

+(∇ζε ∗ με)(x)(ϕε ∗ με)(y)
m−2∣

∣ dμε(y) dx,

where we use the abbreviation pε := (ϕε ∗ με)
m−2με . This quantity differs from

∥

∥∇δFm
ε /δμε

∥

∥

L1(με;Rd )
merely by the placement of the absolute value sign:

‖με‖BVm
ε
≥
∫

Rd

∣

∣

∣

∣

∫

Rd
ζε(x−y)(∇ζε ∗ pε)(x)+(∇ζε ∗ με)(x)(ϕε ∗ με)(y)

m−2dx
∣

∣

∣

∣
dμε(y)

=
∫

∣

∣(∇ϕε ∗ pε)+ (∇ϕε ∗ με)(ϕε ∗ με)
m−2∣

∣ dμε =
∥

∥

∥

∥
∇ δFm

ε

δμε

∥

∥

∥

∥

L1(με;Rd )

.

(24)

Serfaty’s scheme allows one to assume, without loss of generality, that |Fm
ε |(με) is

bounded uniformly in ε > 0 for almost every t ∈ [0, T ], and Hölder’s inequality ensures that
|Fm

ε |(με) =
∥

∥∇δFm
ε /δμε

∥

∥

L2(με;Rd )
≥ ∥∥∇δFm

ε /δμε

∥

∥

L1(με;Rd )
; see Proposition 3.12. Con-

sequently, we miss the bound we require on ‖με‖BVm
ε
merely by placement of the absolute

value sign in inequality (24).
Still, ‖με‖BVm

ε
has a useful heuristic interpretation. Through the proof of Theorem 5.8,

we obtain

lim inf
ε→0

∫ T

0

∥

∥

∥

∥
∇ δFm

ε

δμε

∥

∥

∥

∥

L1(με;Rd )

dt ≥ m

m − 1

∫ T

0

∥

∥∇μ(t)m−1
∥

∥

L1(μ(t);Rd )
dt

=
∫ T

0

∫

Rd

∣

∣∇μ(t, x)m
∣

∣ dx dt; (25)

see the inequality (33) and Proposition B.2. Consequently, one may think of ‖με‖BVm
ε
as a

nonlocal approximation of the L1-norm of the gradient of μm .
We begin with a technical lemma we shall use to prove the convergence of the gradient

flows.

Lemma 5.7 Let ε > 0 and m ≥ 2, and let T > 0 and με ∈ AC2([0, T ];P2(R
d)). Then for

any Lipschitz function f : [0, T ] × R
d → R with constant L f > 0, there exists r > 0 so

that

‖[(ζε ∗ ( f με))− f (ζε ∗ με)] (∇ζε ∗ pε)+ [(ζε ∗ ( f pε))− f (ζε ∗ pε)] (∇ζε ∗ με)‖L1([0,T ]×Rd )

≤ εr L f

⎛

⎝

∫ T

0
‖με(t)‖BVm

ε
dt + 2Cζ ‖∇ζ‖L1(Rd )T

1/(m−1)
(∫ T

0
Fm

ε (με(t)) dt

)
m−2
m−1
⎞

⎠ ,

where Cζ > 0 is as in Assumption 2.1.
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Proof. We argue similarly as in Lemma 2.2. Let f : [0, T ] × R
d → R be Lipschitz with

constant L f > 0. Then,
∫

∣

∣ [(ζε ∗ ( f με))− f (ζε ∗ με)] (∇ζε ∗ pε)+ [(ζε ∗ ( f pε))− f (ζε ∗ pε)] (∇ζε ∗ με)
∣

∣ dLd

=
∫

Rd

∣

∣

∣

∣

∫

Rd
ζε(x − y)[ f (y)− f (x)] [(∇ζε ∗ pε)(x)+ (∇ζε ∗ με)(x)(ϕε ∗ με)(y)

m−2] dμε(y)

∣

∣

∣

∣
dx

≤ L f

∫

Rd

∫

Rd
ζε(x − y)|x − y| ∣∣(∇ζε ∗ pε)(x)+ (∇ζε ∗ με)(x)(ϕε ∗ με)(y)

m−2∣
∣ dμε(y) dx .

By Assumption 2.1, Cζ is so that ζ(x) ≤ Cζ |x |−q for q > d + 1 for all x ∈ R
d . Choose r̄

so that

0 < r̄ <
q − (d + 1)

q − 1
. (26)

Now, we break the integral with respect to dμε(y) above into integrals over the domain
Bεr̄ (x) and R

d\Bεr̄ (x), bounding the above quantity by

L f

∫

Rd

∫

B
εr̄ (x)

ζε(x − y)|x − y| ∣∣(∇ζε ∗ pε)(x)+ (∇ζε ∗ με)(x)(ϕε ∗ με)(y)
m−2∣

∣ dμε(y) dx

+ L f

∫

Rd

∫

Rd\B
εr̄ (x)

ζε(x − y)|x − y| ∣∣(∇ζε ∗ pε)(x)+(∇ζε ∗ με)(x)(ϕε ∗ με)(y)
m−2∣

∣ dμε(y) dx,

=: I1 + I2

First, we consider I1. Since, in the integral, |x − y| < εr̄ , we obtain

I1 < εr̄ L f ‖με‖BVm
ε

.

Now, we consider I2. We apply the inequality in (52) to obtain ζε(x− y)|x− y| ≤ Cζ ε
r̃ with

r̃ := r̄(1− q)+ q − d in the integral—the inequality in (26) ensures r̃ > 1. Consequently,

I2 ≤ εr̃ L f Cζ

(∫

|∇ζε ∗ pε| dLd
∫

dμε +
∫

|∇ζε ∗ με| dLd
∫

pε dLd
)

≤ 2εr̃ L f Cζ ‖∇ζε‖L1(Rd )

∫

pε Ld ≤ 2εr̃−1L f Cζ ‖∇ζ‖L1(Rd )Fm
ε (μ)(m−2)/(m−1),

where, in the last inequality, we use that ‖∇ζε‖L1(Rd ) = ‖∇ζ‖L1(Rd )/ε and, by Jensen’s
inequality for the concave function s(m−2)/(m−1),

∫

pε dLd =
∫

(ϕε ∗ με)
m−2dμε

≤
(∫

(ϕε ∗ με)
m−1dμε

)(m−2)/(m−1)
= Fm

ε (με)
(m−2)/(m−1). (27)

Since 0 ≤ (m − 2)/(m − 1) < 1, Jensen’s inequality gives

∫ T

0
Fm

ε (με(t))
(m−2)/(m−1) dt ≤ T

(

1

T

∫ T

0
Fm

ε (με(t)) dt

)(m−2)/(m−1)
. (28)

This gives the result by taking r := min(r̄ , r̃ − 1). ��
With this technical lemma in hand, we now turn to the �-convergence of the gradient

flows.
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Theorem 5.8 Let m ≥ 2, and let V and W be as in Assumption 5.1. Fix T > 0 and suppose
that με ∈ AC2([0, T ];P2(R

d)) is a gradient flow of Em
ε for all ε > 0 satisfying

με(0)
∗
⇀ μ(0) and lim

ε→0
Em

ε (με(0)) = Em(μ(0)), (A0)

for some μ(0) ∈ D(Em). Furthermore, suppose that the following hold:

(A1) supε>0

∫ T
0 ‖με(t)‖BVm

ε
dt <∞;

(A2) there exists μ : [0, T ] → P2(R
d) such that ζε ∗με(t) → μ(t) in L1([0, T ]; Lm

loc(R
d))

as ε → 0, and supε>0

∫ T
0 ‖ζε ∗ με(t)‖mLm (Rd )

dt < ∞.

Then με(t)
∗
⇀ μ(t) for almost every t ∈ [0, T ], μ ∈ AC2([0, T ];P2(R

d)), and μ is the
gradient flow of Em with initial data μ(0).

Proof. First, we note that με(t)
∗
⇀ μ(t) for almost every t ∈ [0, T ]. This follows from

(A2), which ensures ζε ∗με(t) → μ(t) in L1([0, T ]; Lm
loc(R

d)), hence ζε ∗με(t) → μ(t) in
distribution for almost every t ∈ [0, T ]. Then, since ζε ∗ με(t)− με(t) → 0 in distribution
for all t ∈ [0, T ], we obtainμε(t) → μ(t) in distribution. Finally, since weak-* convergence
and convergence in distribution are equivalent when με and μ are both probability measures

[3, Remark 5.1.6], we obtain με(t)
∗
⇀ μ(t) for almost every t ∈ [0, T ].

It remains to verify conditions (S0), (S1), (S2), and (S3) fromTheorem5.6. Item (S0) holds
by assumption (A0). Item (S1) follows by the same argument as in [37, Theorem 5.6]. Item

(S2) is an immediate consequence of the fact that με(t)
∗
⇀ μ(t) for almost every t ∈ [0, T ],

our main �-convergence Theorem 4.1, and the lower semicontinuity of the potential and
interaction energies with respect to weak-∗ convergence [3, Lemma 5.1.7].

Wedevote the remainder of the proof to showingCondition (S3).We shall use the following
fact throughout: combining Assumption (A2) with Proposition 3.8 implies that

sup
ε>0

∫ T

0
Fm

ε (με(t)) dt ≤ sup
ε>0

1

m − 1

∫ T

0
‖ζε ∗ με(t)‖mLm (Rd )

dt <∞. (29)

Toprove (S3)wemayassume,without loss of generality, that lim infε→0
∫ T
0 |∂Em

ε |(με(t))2 dt
is finite, so by Fatou’s lemma

∞ > lim inf
ε→0

∫ T

0
|∂Em

ε |(με(t))
2 dt ≥

∫ T

0
lim inf

ε→0
|∂Em

ε |(με(t))
2 dt, (30)

so lim infε→0 |∂Em
ε |(με(t)) < ∞ for almost every t ∈ [0, T ]. In particular, up to taking

subsequences, we may assume that, for almost every t ∈ [0, T ], {|∂Em
ε |(με(t))}ε is bounded

uniformly in ε > 0. By Corollary 3.13,

|∂Em
ε |(με) =

∥

∥

∥

∥
∇V + ∇W ∗ με + ∇ δFm

ε

δμε

(με)

∥

∥

∥

∥

L2(με;Rd )

.

Furthermore, note that if

μm ∈ W 1,1(Rd) and ∇μm + ∇Vμ+ (∇W ∗ μ)μ = ξμ for some ξ ∈ L2(μ;Rd), (31)

then |∂Em |(μ) = ‖ξ‖L2(μ;Rd ); c.f. [3, Theorem 10.4.13]. Thus, to prove (S3) it suffices to
show that

lim inf
ε→0

∫ T

0

∫ ∣

∣

∣

∣
∇V + ∇W ∗ (με(t))+ ∇ δFm

ε

δμε

(με(t))

∣

∣

∣

∣

2

dμε(t) dt
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≥
∫ T

0

∫

|ξ(t)|2 dμ(t) dt, (32)

when (31) holds for almost every t ∈ [0, T ]. Furthermore, the inequality in (32) is, by
Proposition B.2(ii), a consequence of

lim
ε→0

∫ T

0

∫

f (t)

(

∇V+∇W ∗ με(s)+∇ ∂Fm
ε

∂με

(s)

)

dμε(s)ds =
∫ T

0

∫

f (t)ξ(t) dμ(t) ds,

(33)

for all f ∈ C∞c ([0, T ] × R
d). Observe that Proposition B.2 is stated for probability

measures—we can easily rescale dμε ⊗ dLd to be a probability measure by diving the
above equations by T > 0.

First, we address the terms with the drift and interaction potentials V and W . Combining
Assumption 5.1 on V and W with Assumption (A5.8) on με ensures that |∇V | is uniformly
integrable in dμε ⊗ dLd and (x, y) �→ |∇W (x − y)| is uniformly integrable dμε ⊗ dμε ⊗
dLd .Therefore, by [3, Lemma 5.1.7], (με)ε converging weakly-∗ to μ ensures that

lim
ε→0

∫ T

0

∫

f (t) (∇V + ∇W ∗ (με(t))) dμε(t) dt

= m

m − 1

∫ T

0

∫

Rd
f (t)

(∇V + ∇W ∗ (μ(t))
)

dμ(t) dt .

Now we deal with proving the diffusion part of (31) (that is, for almost every t ∈ [0, T ], we
have μ(t)m ∈ W 1,1(Rd) and ∇μ(t)m = η(t)μ(t) for η ∈ L2(μ;Rd)), and with proving that

lim
ε→0

∫ T

0

∫

f (t)∇ δFm
ε

δμε

(με(t)) dμε(t) dt =
∫ T

0

∫

f (t)η(t) dμ(t) dt, (34)

Recalling the abbreviation pε := (ϕε ∗ με)
m−2με , we rewrite the inner integral on the

left-hand side of (34) as
∫

f∇ ∂Fm
ε

∂με

dμε =
∫

f
(

(∇ϕε ∗ pε)+ (ϕε ∗ με)
m−2(∇ϕε ∗ με)

)

dμε

=
∫

(ζε ∗ ( f με))(∇ζε ∗ pε)+ (ζε ∗ ( f pε))(∇ζε ∗ με) dLd .

Applying Lemma 5.7 together with (29) and (A3), and integrating by parts, we obtain

lim
ε→0

∫ T

0

∫

f (t)∇ δFm
ε

δμε

(με(t)) dμε(t) dt

= lim
ε→0

∫ T

0

∫

f (t)(ζε ∗ (με(t)))(∇ζε ∗ (pε(t))) dLd dt

+
∫ T

0

∫

f (t)(ζε ∗ (pε(t)))(∇ζε ∗ (με(t))) dLd dt

= − lim
ε→0

∫ T

0

∫

∇ f (t)(ζε ∗ (με(t)))(ζε ∗ (pε(t))) dLd dt

= − lim
ε→0

∫ T

0

∫

ζε ∗ (∇ f (t)(ζε ∗ (με(t))))pε(t) dLd dt .
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Now we move ∇ f out of the convolution. By Lemma 2.2, there exists p > 0 so
∣

∣

∣

∣

∫

ζε ∗ (∇ f (ζε ∗ με))pε dLd −
∫

∇ f (ζε ∗ (ζε ∗ με))pε dLd
∣

∣

∣

∣

≤ ε p‖∇ f ‖L∞([0,T ]×Rd )

(∫

(ϕε ∗ με)
m−1dμε + Cζ

∫

pε dLd
)

≤ ε p‖∇ f ‖L∞([0,T ]×Rd )

(

Fm
ε (με)+ CζFm

ε (με)
(m−2)/(m−1)) ,

where we again use (27). Using the inequality in (28) and that {∫ T0 Fm
ε (με(t)) dt}ε is uni-

formly bounded in ε,

− lim
ε→0

∫ T

0

∫

f (t)∇ δFm
ε

δμε

(με(t)) dμε(t) dt = lim
ε→0

∫ T

0

∫

∇ f (t)(ϕε ∗ με)pε dLd dt (35)

= lim
ε→0

∫ T

0

∫

Rd
∇ f (t)(ϕε ∗ με(t))

m−1dμε(t) dt . (36)

To conclude the proof, we aim to apply Proposition B.2 (iii), and we begin by verifying
the hypotheses of this proposition. First, note that since ζε ∗με → μ in L1([0, T ]; Lm

loc(R
d))

for m ≥ 2 as ε → 0, we also have ζε ∗ με → μ in L1([0, T ]; L2
loc(R

d)). Let wε =
ϕε ∗ με . By definition,

∫

wεdμε =
∫

(ζε ∗ με)
2 dLd . Thus, Assumption (A2) and the fact

that ζε ∗ με(R
d) = 1 imply

sup
ε>0

∫ T

0

∫

|ζε ∗ με(t)|2 dLd dt <∞,

so thatwε ∈ L1([0, T ], L1(με;Rd)). Furthermore, for any h ∈ L∞([0, T ];W 1,∞(Rd)), the
mollifier exchange Lemma 2.2 and the convergence of ζε ∗ με to μ in L1([0, T ]; L2

loc(R
d))

give
∫ T

0

∫

h(t)wε(t) dμε(t) =
∫ T

0

∫

ζε ∗ (hμε(t)) dζε ∗ (με(t)) dt

=
∫ T

0

∫

h(t)(ζε ∗ με(t))
2 dLd dt

+ ε p‖∇h‖L∞([0,T ];W 1,∞(Rd ))
(∫ T

0

∫

‖ζε ∗ (με(t))‖2L2(Rd )
dLd dt + Cζ

)

−→
∫ T

0

∫

h(t)μ(t)2 dLd dt, (37)

as ε → 0. Thus,wε ∈ L1([0, T ]; L1(με;Rd)) converges weakly toμ ∈ L1([0, T ]; L1(dμ))

in the sense ofDefinitionB.1 as ε → 0.As before,while this definition is stated for probability
measures, we can easily rescale dμε ⊗ dLd to be a probability measure by diving the above
equations by T > 0.

We now seek to show that, for all g ∈ C∞c ([0, T ] × R
d),

lim
ε→0

∫ T

0

∫

g(t)|wε(t)|m−1 dμε(t) dt =
∫ T

0

∫

g(t)|μ(t)|m−1 dμ(t).

When m = 2, this follows from Eq. (37). Suppose m > 2. Let κ : Rd → R be a smooth
cutoff function with 0 ≤ κ ≤ 1, ‖∇κ‖L∞(Rd ) ≤ 1, ‖D2κ‖L∞(Rd ) ≤ 4, κ(x) = 1 for all
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|x | < 1/2 and κ(x) = 0 for all |x | > 2. Given R > 0, define κR := κ(·/R), so that
‖∇κR‖L∞(Rd ) ≤ 1/R. Then, by Jensen’s inequality for the convex function s �→ sm−1,
Lemma 2.2, and Assumption (A5.8),

lim sup
ε→0

∫ T

0

∫

|κRwε(t)|m−1 dμε(t) dLd dt

≤ lim sup
ε→0

∫ T

0

∫

(ζε ∗ (με(t)))
m−1ζε ∗ (κm−1

R με(t)) dLd dt

≤ lim sup
ε→0

∫ T

0

∫

κm−1
R (ζε ∗ (με(t)))

m dLd dt

=
∫ T

0

∫

(κRμ(t))m−1 dμ(t) dt .

Combining this with (37), where we may choose h = κRg for any g ∈ C∞c (Rd), we have
that (κRwε)ε converges strongly in Lm−1(με;Rd) to κRμ ∈ Lm−1(μ;Rd) as ε → 0, in the
sense of Definition B.1. Finally, since Assumption (A5.8) ensures that

∫ T
0 Mm−1(με(t)) ds

is bounded uniformly in ε, we may apply Proposition B.2(iii) to conclude that for all g ∈
C∞c ([0, T ] × R

d),

lim
ε→0

∫ t

0

∫

Rd
g|κRwε|m−1dμε =

∫ t

0

∫

Rd
g|κRμ|m−1dμ.

Taking g = ∇ f , choosing R > 1 so that κR ≡ 1 on the support of ∇ f , and combining the
above equation with Eq. (35), we obtain

lim
ε→0

∫ T

0

∫

f (t)∇ δFm
ε

δμε

(με(t)) dμε(t) dt = −
∫ T

0

∫

∇ f (t)μ(t)m dLd dt . (38)

We now prove that μ has the necessary regularity. In particular, we show that for almost
every t ∈ [0, T ], we have μm ∈ W 1,1(Rd) and ∇μm = ημ for η ∈ L2(μ;Rd). Inequality
(30) ensures that, up to subsequences {∫ t0 |∂Fm

ε |2(με(t)) dt}ε is bounded uniformly in ε > 0.
Thus, by Hölder’s inequality, there exists C > 0 so that

C >

∫ T

0

∥

∥

∥

∥
∇ δFm

ε

δμε

(με(t))

∥

∥

∥

∥

2

L2(με;Rd )

dt ≥
∫ T

0

∥

∥

∥

∥
∇ δFm

ε

δμε

(με(t))

∥

∥

∥

∥

2

L1(με;Rd )

dt

≥ T

(

1

T

∫ T

0

∥

∥

∥

∥
∇ δFm

ε

δμε

(με(t))

∥

∥

∥

∥

L1(με;Rd )

dt

)2

,

for all ε > 0. Combining this with (38) gives

CT ‖ f ‖L∞(Rd ) ≥ lim sup
ε→0

‖ f ‖L∞([0,T ]×Rd )

∫ T

0

∥

∥

∥

∥
∇ δFm

ε

δμε

(με(t))

∥

∥

∥

∥

L1(με;Rd )

≥
∫ T

0

∫

f (t)∇(μ(t)m) dLd dt .

Hence ∇(μm) has finite measure on [0, T ] × R
d , so we may rewrite (38) as

lim
ε→0

∫ t

0

∫

f∇ δFm
ε

δμε

(με(t)) dμε(t) dt = −
∫ t

0

∫

f (t) d∇(μ(t)m) dt . (39)
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By another application of Hölder’s inequality, this guarantees

√
C

(∫ t

0
‖ f (t)‖2L2(μ;Rd )

dt

)1/2

≥ lim sup
ε→0

∫ t

0
‖ f (t)‖L2(με;Rd )

∥

∥

∥

∥
∇ δFm

ε

δμε

(με(t))

∥

∥

∥

∥

L2(με;Rd )

≥
∫ t

0

∫

f (t)d∇(μ(t)m) dt .

Riesz representation theorem then ensures that there exists η ∈ L2([0, t]; L2(μ;Rd)) so that
ημ = ∇(μm). In particular, this implies ∇(μ(t)m) ∈ L1(Rd) for almost every t ∈ [0, T ], so
μm ∈ W 1,1(Rd) for almost every t ∈ [0, T ] and we may rewrite (39) as

lim
ε→0

∫ T

0

∫

Rd
f (t)∇ δFm

ε

δμε

(με(t)) dμε(t) dt = −
∫ T

0

∫

f (t)η dμ(t) dt,

which completes the proof. ��
We conclude this section by showing that, in the case when m = 2 and for V ,W ∈

C2(Rd) with bounded Hessians, whenever the initial data of the gradient flows have finite
second moments and internal energies, we automatically obtain Assumptions (A5.8)–(A2).
Consequently, in this special case, we are able to conclude the convergence of the gradient
flows without these additional assumptions.

Corollary 5.9 Let ε > 0 and m = 2. In addition to satisfying Assumption 5.1, assume
that V ,W ∈ C2(Rd) have bounded Hessians D2V and D2W. Fix T > 0, and suppose
με ∈ AC2([0, T ];P2(R

d)) is a gradient flow of Em
ε satisfying

με(0)
∗
⇀ μ(0), lim

ε→0
Em

ε (με(0)) = Em(μ(0)), μ(0) ∈ D(Em), (40)

sup
ε>0

M2(με(0)) <∞, sup
ε>0

∫

με(0) log(με(0)) dLd < +∞. (41)

Then, there exists μ ∈ AC2([0, T ];P2(R
d)) such that

με(t)
∗
⇀ μ(t) and ζε ∗ με(t)

L2(Rd )−−−−→ μ(t) for all t ∈ [0, T ],
and μ is the gradient flow of Em with initial data μ(0).

Remark 5.10 (Previous work, m = 2) The above theorem generalizes a result by Lions and
Mas-Gallic [60] on a numerical scheme for the porous medium equation ∂tμ = �μ2 on a
bounded domain with periodic boundary conditions to equations of the form (1) on Euclidean
space.

Proof of Corollary 5.9 First, we show that supε>0 ‖ζε ∗ (με(0))‖L2(Rd ) < ∞. The fact that
D2V and D2W are bounded ensures |V | and |W | grow at most quadratically. Combining this
with Eqs. (40)–(41), which ensure {Em

ε (μ(0))}ε and {M2(με(0))}ε are bounded uniformly
in ε > 0, we obtain

sup
ε>0
‖ζε ∗ (με(0))‖2L2(Rd )

= sup
ε>0

F2
ε (με(0))

= sup
ε>0

(E2
ε (με(0))−

∫

Vdμε(0)

−1

2

∫

W ∗ (με(0))dμε(0)

)

< +∞.
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Furthermore, since the energy F2
ε decreases along solutions to the gradient flow, we have

sup
ε>0
‖ζε ∗ (με(t))‖2L2(Rd )

≤ sup
ε>0
‖ζε ∗ (με(0))‖2L2(Rd )

<∞ for all t ∈ [0, T ]. (42)

Next, we show that our assumption that the initial data has bounded entropy (41) ensures
∫ t
0 ‖∇ζε ∗ (με(s))‖2L2(Rd )

ds < C(1 + T ) + M2(με(t)) for all t ∈ [0, T ], for some C > 0

depending on d , V , W and supε>0

∫

logμε(0) dμε(0). Formally differentiating the entropy
F1(μ) = ∫ log(μ) dμ along the gradient flows με , we expect that, for all t ∈ [0, T ],
d

dt

[F1(με(t))
] = −2

∫

|∇ζε ∗ (με(t))|2 dLd +
∫

�V dμε(t)+
∫

�W ∗ (με(t)) dμε(t).

Hence, for any t ∈ [0, T ],

F1(με(t))− F1(με(0)) = −2
∫ t

0

∫

|∇ζε ∗ (με(s))|2 dLd ds

+
∫ t

0

∫

�V dμε(s) ds +
∫ t

0

∫

�W ∗ (με(s)) dμε(s) ds

≤ −2
∫ t

0

∫

|∇ζε ∗ (με(s))|2 dLd ds

+ t
(‖D2V ‖L∞(Rd ) + ‖D2W‖L∞(Rd )

)

This computation can be made rigorous by first proving the analogous inequality along
discrete time gradient flows using the flow interchangemethod ofMatthes et al. [64, Theorem
3.2] and then sending the timestep to zero to recover the above inequality in continuous
time. Thus, there exists K0 > 0 depending on V ,W and supε>0 F1(με(0)) so that, for all
t ∈ [0, T ],

∫ t

0
‖∇ζε ∗ (με(s))‖2L2(Rd )

ds ≤ −F1(με(t))+ K0(1+ t).

Finally, by a Carleman-type estimate [30, Lemma 4.1], we haveF1(ν) ≥ −(2π)d/2−M2(ν)

for any ν ∈ P2(R
d). Therefore,

∫ t

0
‖∇ζε ∗ (με(s))‖2L2(Rd )

ds ≤ M2(με(t))+ C(1+ t). (43)

Now, we use this estimate to show that {M2(με(t))}ε is uniformly bounded in ε for all t ∈
[0, T ]. Let κ be a smooth cutoff function with 0 ≤ κ ≤ 1, ‖∇κ‖L∞(Rd ) ≤ 1, ‖D2κ‖L∞(Rd ) ≤
4, κ(x) = 1 for all |x | < 1/2 and κ(x) = 0 for all |x | > 2. Given R > 0, define κR(x) =
κ(x/R), so that ‖∇κR‖L∞(Rd ) ≤ 1/R and ‖D2κR‖L∞(Rd ) ≤ 4/R2. Then there existsCκ > 0
so that for all R > 1, |∇(κR(x)x2)| ≤ Cκ |x | and |D2(κR(x)x2)| ≤ Cκ for all x ∈ R

d .
By Proposition 5.4, με is a weak solution of the continuity equation. Therefore choosing
κR(x)|x |2 as our test function, we obtain, for all t ∈ [0, T ],
∫

Rd
κR(x)|x |2 dμε(t, x)−

∫

Rd
κR(x)|x |2 dμε(0, x)

= − 2
∫ t

0

∫

Rd
∇(κR(x)x2) (∇ϕε ∗ (με(s))+ ∇V (x)+ ∇W ∗ (με(s))(x)) dμε(s, x).
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Since D2V and D2W are bounded, |∇V | and |∇W | grow at most linearly. Consequently,
there exists C ′ > 0, depending on V , W , and Cκ so that

−2
∫ t

0

∫

Rd
∇(κR(x)x2)(∇V (x)+ ∇W ∗ (με(s))(x) dμε(s, x)

≤ C ′
(

1+
∫ t

0
M2(με(s)) ds

)

.

Likewise, by Lemma 5.7, there exists r > 0 so that, for all t ∈ [0, T ],

− 2
∫ t

0

∫

Rd
∇(κR(x)x2)∇ϕε ∗ (με(s))(x) dμε(s, x)

= − 2
∫ t

0

∫

Rd
ζε ∗ (∇(κR(x)x2)με(s))∇ζε ∗ (με(s))(x) dx ds

≤ − 2
∫ t

0

∫

Rd
∇(κR(x)x2)ζε ∗ (με(s))(x)∇ζε ∗ (με(s))(x) dx ds

+ εrCκ

(∫ t

0
‖με(s)‖BVm

ε
ds + 2t‖∇ζ‖L1(Rd )

)

=
∫ t

0

∫

Rd
�(κR(x)x2)(ζε ∗ (με(s)))

2 dx ds

+ εrCκ

(∫ t

0
‖με(s)‖BVm

ε
ds + 2t‖∇ζ‖L1(Rd )

)

≤ Cκ

∫ t

0
F2

ε (με(s)) ds

+ 2εrCκ

(∫ t

0
‖ζε ∗ (με(s))‖L2(Rd )‖∇ζε ∗ (με(s))‖L2(Rd ) ds + 2t‖∇ζ‖L1(Rd )

)

≤ Cκ tF2
ε (με(0))+ 2εrCκ

(
√

tF2
ε (με(0))

√

M2(με(t))+ C(1+ t)+ 2t‖∇ζ‖L1(Rd )

)

≤ C ′′
(

1+ t + εr M2(με(t))
)

for C ′′ depending on Cκ , supε>0 F2
ε (με(0)), and ‖∇ζ‖L1(Rd ). In the second inequality, we

use that

‖με‖BVm
ε
≤ 2‖(∇ζε ∗ με)(ζε ∗ με)‖L1(Rd ) ≤ ‖ζε ∗ με‖L2(Rd )‖∇ζε ∗ με‖L2(Rd ) (44)

Therefore, there exists C ′′ > 0 so that, for all t ∈ [0, T ],
∫

Rd
κR(x)|x |2 dμε(t, x)

≤ M2(με(0))+ C ′
(

t +
∫ t

0
M2(με(s)) ds

)

+ C ′′
(

1+ t + εr M2(με(t))
)

.

As the right-hand side is independent of R > 1, by sending R → +∞ by the dominated
convergence theorem we obtain that for εr < 1/(2C ′′),

M2(με(t)) ≤ 2C ′
(

t +
∫ t

0
M2(με(s)) ds

)

+ 2C ′′(t + 1).
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Therefore, by Gronwall’s inequality, there exists C̃ depending on C ′, C ′′ and T (and inde-
pendent of ε) so that

M2(με(t)) < C̃ for all t ∈ [0, T ]. (45)

We may combine this with the inequality in (43) to obtain, for all t ∈ [0, T ],
∫ t

0
‖∇ζε ∗ (με(s))‖2L2(Rd )

ds ≤ C̃ + C(1+ t) for t ∈ [0, T ]. (46)

We now use these results to verify the assumptions of Theorem 5.8 hold, so that we
may apply this result to conclude convergence of the gradient flows. Assumption (A5.8) is a
consequence of the inequality in (45). Assumption (A5.8) is a consequence of the inequalities
in (42), (44) and (46).

It remains to showAssumption (A2). First, note that since supε>0 ‖ζε∗με‖L∞([0,T ]×Rd ) <

∞, every subsequence of (ζε ∗ με)ε has a further subsequence, which we also denote by
(ζε ∗ με)ε , that converges weakly in L2([0, T ] × R

d) to some ν as ε → 0, and for which
ζε ∗ με(t)⇀ν(t) weakly in L2(Rd) for all t ∈ [0, T ]. By uniqueness of limits and (40), we
have ν(0) = μ(0) almost everywhere.

Next, note that (42) and (46) ensure that supε>0 ‖ζε∗μ‖L2([0,T ];H1(Rd )) < ∞. In particular
we have supε>0 ‖κRζε ∗ μ‖L2([0,T ];H1(Rd )) < ∞ for the smooth cutoff function κR , R > 1.
Therefore, by the Rellich–Kondrachov Theorem (c.f. [44, Sect. 5.7]), for almost every t ∈
[0, T ], up to another subsequence, (κRζε ∗ με(t))ε converges strongly in L2(Rd) to some
νR(t). In particular, for any f ∈ C∞c (BR/2(0)),

∫

f dν(t) = lim
ε→0

∫

f dζε ∗ με(t) =
∫

f dνR(t) for all t ∈ [0, T ],
so ν = νR almost everywhere in BR/2(0). Since R > 1 is arbitrary, this shows that for
all t ∈ [0, T ], ζε ∗ με(t) → ν(t) strongly in L2

loc(R
d). Finally, using again that {‖ζε ∗

με(t)‖L2(Rd )}t is bounded uniformly in t ∈ [0, T ], the dominated convergence theorem
ensures that ζε ∗ με(t) → ν(t) in L1([0, T ]; L2

loc(R
d) as ε → 0. This completes the Proof

of Assumption (A2).

As we have now verified the conditions of Theorem 5.8, we now conclude that με(t)
∗
⇀

ν(t) for almost every t ∈ [0, T ], for some ν ∈ AC2([0, T ];P2(R
d)) which is the gradient

flow of E2 with initial data μ(0). By Proposition 5.3, the gradient flow of E2 with initial
data μ(0) is unique. Thus, since any subsequence of (με)ε has a further subsequence which
converges to ν, the full sequence must converge to μ, which gives the result. ��

6 Numerical results

6.1 Numerical method and convergence

We now apply the theory of regularized gradient flows developed in the previous sections
to develop a blob method for diffusion, allowing us to numerically simulate solutions to
partial differential equations of Wasserstein gradient flow type (1). We begin by describing
the details of our numerical scheme and applying Theorem 5.8 to prove its convergence,
under suitable regularity assumptions.

Theorem 6.1 Assume m ≥ 2 and V and W satisfy Assumption 5.1. Suppose μ(0) ∈ D(Em)

is compactly supported in BR(0), the ball of radius R centered at the origin. For fixed grid
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spacing h > 0, define the grid indices Qh
R := {i ∈ Z

d : |ih| ≤ R} and approximate μ(0) by
the following sequence of measures:

με(0) :=
∑

i∈Qh
R

δihmi , mi =
∫

Qi

dμ(0), i ∈ Qh
R, (47)

where Qi is the cube centered at ih of side length h. Next, for ε > 0, define the evolution of
these measures by

με(t) =
∑

i∈Qh
R

δXi (t)mi , t ∈ [0, T ], (48)

where {Xi (t)}i∈Qh
R
are solutions to the ODE system (23) on a time interval [0, T ] with initial

data Xi (0) = ih. If h = o(ε) as ε → 0 and Assumptions (A5.8)–(A2) from Theorem 5.8
hold, then (με(t))ε converges in the weak-∗ topology to μ(t) as ε → 0 for almost every
t ∈ [0, T ], where μ(t) is the unique solution of (1) with initial datum μ(0).

Proof. By Corollary 5.5, με ∈ AC2([0, T ];P2(R
d)) is the gradient flow of Em

ε with initial
condition με(0) for all ε > 0. To apply Theorem 5.8 and obtain the result, it remains to show
that Assumption (A0) holds. In particular, we must show that, assuming h = o(ε),

lim
ε→0

(∫

V dμε(0)+ 1

2

∫

(W ∗ (με(0))) dμε(0)+ Fm
ε (με(0))

)

=
∫

V dμ(0)+ 1

2

∫

(W ∗ (μ(0))) dμ(0)+ Fm(μ(0)).

Define T : Rd → R
d by T (y) = ih for y ∈ Qi and i ∈ Qh

R . Then T is a transport map from
μ(0) to με(0) and |T (y)− y| ≤ h for all y ∈ R

d . By construction,

W2(με(0), μ(0)) ≤ {|T (y)− y| | y ∈ suppμ(0)} ≤ h,

so με(0)
∗
⇀ μ(0) as ε → 0 (and so, as h → 0). Likewise, for all ε, h > 0, suppμε(0) ⊆

BR(0). Consequently, since V and W are continuous,

lim
ε→0

∫

Vdμε(0)+ 1

2

∫

(W ∗ (με(0))) dμε(0) =
∫

Vdμ(0)+ 1

2

∫

(W ∗ (μ(0))) dμ(0).

Thus, it remains to show that

lim
ε→0

Fm
ε (με(0)) = Fm(μ(0)).

By Theorem 4.1, we have that lim infε→0 Fm
ε (με(0)) ≥ Fm(με(0)). By Proposition 3.8, for

all ε > 0 we have

Fm
ε (με(0)) ≤ Fm(με(0)) = 1

m−1‖ζε ∗ με‖mLm (Rd )
.

Consequently, to show that lim supε→0 Fm
ε (με(0)) ≤ Fm(μ(0)) = ‖μ(0)‖m

Lm (Rd )
/(m − 1),

it suffices to show that ζε ∗ με(0) → μ(0) in Lm as ε → 0.
For simplicity of notation, we suppress the dependence on time and show ζε ∗ με → μ

in Lm as ε → 0. By the assumptions that μ ∈ D(Em) with compact support and V and W
are continuous, we have μ ∈ Lm(Rd). Consequently ζε ∗ μ → μ in Lm as ε → 0, and it is
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enough to show that ζε ∗ με − ζε ∗ μ → 0 in Lm . Using that T is a transport map from με

to μ,

|ζε ∗ με(x)− ζε ∗ μ(x)| =
∣

∣

∣

∣

∫

Rd
ζε(x − T (y))− ζε(x − y) dμ(y)

∣

∣

∣

∣

≤
∫ 1

0

∫

Rd
|∇ζε(x − (1− α)T (y)− αy)| |T (y)− y| dμ(y)dα

≤ h
∫ 1

0

∫

Rd
|∇ζε(x − (1− α)T (y)− αy)| dμ(y)dα.

Combining the decay of ∇ζ from Assumption 2.1 with the fact that ∇ζ is continuous,
there exists C > 0 so that |∇ζ(x)| ≤ C(1B(x) + |x |−q ′1Rd\B(x)), where B = B1(0) is
the unit ball centered at the origin. Note that if |x − y| ≥ 2h, then for all α ∈ [0, 1],
|x− (1−α)T (y)−αy| ≥ |x− y|−h ≥ |x− y|/2 and |x−(1−α)T (y)−αy| ≤ 3|x− y|/2.
Thus, by the assumptions on our mollifier, we have

|∇ζε(x − (1− α)T (y)− αy)|

≤ C

εd+1

[

1B

(

x − (1− α)T (y)− αy

ε

)

+ εq
′ |x − (1− α)T (y)− αy|−q ′ 1Rd\B

(

x − (1− α)T (y)− αy

ε

)]

≤ C

εd+1

(

1B

( |x − y|
2ε

)

+
(

2ε

3

)q ′

|x − y|−q ′ 1B\Rd

(

3|x − y|
2ε

)
)

.

Thus, taking the Lm-norm with respect to x , doing a change of variables, and applying
Minkowski’s inequality, we obtain

‖ζε ∗ με − ζε ∗ μ‖Lm (Rd )

≤ h‖∇ζε‖∞
∥

∥

∥

∥

∫

B2h (x)
μ(y)

∥

∥

∥

∥

m

+ Ch

εd+1

∥

∥

∥

∥

∥

∫

B2h (x)c

(

1B

( |x − y|
2ε

)

+
(

2ε

3

)q ′

|x − y|−q ′ 1B\Rd

(

3|x − y|
2ε

)
)

dμ(y)

∥

∥

∥

∥

∥

m

= h‖∇ζε‖∞
∥

∥

∥

∥

∫

B2h (0)
μ(x − w)dw

∥

∥

∥

∥

m

+ Ch

εd+1

∥

∥

∥

∥

∥

∫

B2h (0)c

(

1B

( |w|
2ε

)

+
(

2ε

3

)q ′

|w|−q ′ 1B\Rd

(

3|w|
2ε

)
)

μ(x − w)dw

∥

∥

∥

∥

∥

m

≤ c‖μ‖m
(

hd+1

εd+1
+ h

ε

)

,

where c > 0 depends on C, ‖∇ζ‖∞, and the space dimension. Therefore, provided that
h = o(ε) as ε → 0, we obtain that ζε ∗ με − ζε ∗ μ→ 0 in Lm . ��
Remark 6.2 (compact support of initial data) In Theorem6.1, we assume that the initial datum
of the exact solution μ(0) ∈ D(Em) is compactly supported. More generally, under the same
assumptions on V , W , and m, given any ν0 ∈ D(Em) ∩ P2(R

d) without compact support,
there exists ν̃0 ∈ D(Em) with compact support such that ν0 and ν̃0 are arbitrarily close in the
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Wasserstein distance. Furthermore, by the contraction inequality for gradient flows of Em ,
the solution ν with initial data ν0 and the solution ν̃ with initial data ν̃0 satisfy

W2(ν(t), ν̃(t)) ≤ CW2(ν0, ν̃0) for all t ∈ [0, T ],
where C > 0 depends on T and the semiconvexity of V and W [3, Theorem 11.2.1]. In this
way, any solution of (1) with initial datum in D(Em) ∩ P2(R

d) can be approximated by a
solution with compactly supported initial datum, so that our assumption of compact support
in Theorem 6.1 is not restrictive.

Remark 6.3 [Assumptions (A5.8)–(A2)] In Theorem 6.1, we proved that, as long asAssump-
tions (A5.8)–(A2) from Theorem 5.8 hold along the particle solutions {με}ε , then any limit
of these particle solutions must be the corresponding gradient flow of the unregularized
energy. Verifying these conditions analytically can be challenging; see Theorem 5.9. How-
ever, numerical results can provide confidence that these conditions hold along a given particle
approximation.

A sufficient condition for Assumption (A5.8) is that the (m− 1)th moment of the particle
solution

∑

i∈Qh
R

|Xi (t)|m−1mi

is bounded uniformly in t, ε, and h. In particular, this is satisfied if the particles remain
compactly supported in a ball.

A sufficient condition for Assumption (A5.8) is that
∫

|∇ζε ∗ pε| dζε ∗ με +
∫

|∇ζε ∗ με| dζε ∗ pε, (49)

with pε = (ϕε ∗ με)
m−2με , remains bounded uniformly in t , ε, and h. In fact, for purely

diffusive problems, we observe that this quantity is not only bounded uniformly in ε and h,
but decreases in time along our numerical solutions; see Fig. 3 in the preprint version of the
manuscript, arXiv:1709.09195. For the nonlinear Fokker–Planck equation, we observe that
this quantity is bounded uniformly in ε and h and converges to the corresponding norm of
the steady state as t →∞; see Fig. 6 in the preprint version.

A sufficient condition for Assumption (A2) is that the blob solution converges to a limit
in L1 and L∞, uniformly on bounded time intervals. Again, we observe this numerically,
in both one and two dimensions, and both for purely diffusive equations and the nonlinear
Fokker–Planck equation; see Fig. 4 below. In this way, Assumptions (A5.8)–(A2) may be
verified numerically in order to give confidence that the limit of any blob method solution is,
in fact, the correct exact solution.

6.2 Numerical implementation

Wenowdescribe the details of our numerical implementation. In all of the numerical examples
which follow, our mollifiers ζε and ϕε are given by Gaussians,

ζε(x) = 1

(4πε2)d/2 e
−|x |2/4ε2 , ϕε(x)

= ζε ∗ ζε(x) = 1

(8πε2)d/2 e
−|x |2/8ε2 , x ∈ R

d , ε > 0.
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In addition to Gaussian mollifiers, we also performed numerical experiments with a range
of compactly supported and oscillatory mollifiers and observed similar results. In practice,
Gaussian mollifiers provided the best balance between speed of computation and speed of
convergence.

We construct our numerical particle solutions με(t) as described in Theorem 6.1. As a
mild simplification, we consider the mass of each particle to be given by mi = μ(0, ih)hd ,
where μ(0, ih) is the value of the initial datum μ(0) at the grid point ih. For the numerical
examples we consider, in which μ(0) is a continuous function, the rate of convergence is
indistinguishable from defining mi as in (47).

The system of ordinary differential equations that prescribes the evolution of the particle
locations [c.f. (23) and (48)] can be solved numerically in a variety of ways, and we observe
nearly identical results independent of our choice of ODE solver. In analogy with previous
work on blob methods in the fluids case [7], we find that the numerical error due to the
choice of time discretization is of lower order than the error due to the regularization and
spatial discretization. We implement the blob method in Python, using the Numpy, SciPy,
and Matplotlib libraries [51,54,81]. In particular, we compute the evolution of the particle
trajectories via the SciPy implementation of the Fortran VODE solver [15], which uses either
a backward differentiation formula (BDF) method or an implicit Adams method, depending
on the stiffness of the problem.

Our convergence result, Theorem 6.1, requires that h = o(ε) as ε → 0. Numerically,
we observe the fastest rate of convergence with ε = h1−p , for 0 < p � 1, as h → 0.
Since computational speed decreases as p approaches 0, we take ε = h0.99 in the following
simulations. In these examples, we discretize the initial data on a line (d = 1) or square of
sidelength 5.0 (d = 2), centered at 0.

Finally, to visualize our particle solution (48) and compare it to the exact solutions in
L p-norms, we construct a blob solution obtained by convolving the particle solution with a
mollifier,

μ̃ε(t, ·) := ζε ∗ με(t, ·) =
∑

i∈Qh
R

ζε(· − xi )mi , t ∈ [0, T ] (50)

ByLemma2.3, ifμε

∗
⇀ μ as ε → 0,whereμ is the exact solution, thenwe also have μ̃ε

∗
⇀ μ.

Consequently our convergence result, Theorem 6.1, also applies to this blob solution.
We measure the accuracy of our numerical method with respect to the L1-, L∞-, and

Wasserstein metrics. To compute the L1- and L∞-errors, we take the difference between the
exact solution and the blob solution (50) and evaluate discrete L1- and L∞-norms using the
following formulas:

‖ f ‖L1(Qh
R) =

∑

i∈Qh
R

| f (ih)|hd , ‖ f ‖L∞(Qh
R)

= max
i∈Qh

R

| f (ih)|, for a given function f : Rd → R.

We compute the Wasserstein distance between our particle solution με in (48) and the
exact solution μ in one dimension using the formula

W2(με, μ) =
(∫ 1

0
|F−1με

(s)− F−1μ (s)|2 ds
)1/2

, (51)
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Heat and Porous Medium Equations: Fundamental Solution
Exact vs. Numerical Solution, h = 0.02, varying m

Position
Exact vs. Numerical Solution, varying h, m = 3

Position

Fig. 1 Comparison of exact and numerical solutions to the heat (m = 1) and porous medium (m = 2, 3)
equations. Numerical solutions are plotted with thick lines, and exact solutions are plotted with thin lines

where F−1με
and F−1μ are the generalized inverses of the cumulative distribution functions of

μ and με , respectively; c.f. [3, Theorem 6.0.2]. We evaluate the integral in (51) numerically
using the SciPy implementation of the Fortran library QUADPACK [72]. In two dimensions,
we compute the Wasserstein error by discretizing the exact and blob solutions as piecewise
constant functions on a fine grid and then using the Python Optimal Transport library to
compute the discrete Wasserstein distance between them. In particular, we use the Earth
Mover’s Distance function in this library, which is based on the network simplex algorithm
introduced by Bonneel et al. [14].

6.3 Simulations

Using the method described in the previous section, we now give several examples of numer-
ical simulations. We consider initial data given by linear combinations of Gaussian and
Barenblatt profiles, which we denote as follows:

ψm(τ, x) =
{

1
(4πτ)d/2 e

−|x |2/4τ for m = 1,

τ−dβ(K − κτ−2β |x |2)1/(m−1)+ for m > 1,
x ∈ R

d ,

with

β = 1

2+ d(m − 1)
and κ = β

2

(

m − 1

m

)

,

and K = K (m, d) chosen so that
∫

ψm(τ, x)dx = 1.
In Fig. 1, we compare exact and numerical solutions to the heat and porous medium

equations (V = W = 0, m = 1, 2, 3), with initial data given by a Gaussian (m = 1) or
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Heat and Porous Medium Equations: Double Bump Initial Data

Fig. 2 Numerical simulation of the one-dimensional heat and porous medium equations. Top: Evolution of
the blob density ρhε . Bottom: Evolution of the particle trajectories xi , with colors indicating relative mass of
each particle

Barenblatt (m = 2, 3) function with scaling τ = 0.0625. The top row shows the evolution of
the density on a large spatial scale, at which the exact and numerical solutions are visually
indistinguishable for m = 1 and m = 2. However, for m = 3 the fat tails of the numerical
simulation peel away from the exact solution at small times. The second row depicts the
numerical simulations for m = 3 on a smaller spatial scale, illustrating how the tails of the
numerical simulation converge to the exact solution as the spacing of the computational grid
is refined.

In Fig. 2, we compute solutions of the one-dimensional heat and porousmedium equations
(V = W = 0, m = 1, 2, 3), illustrating the role of the diffusion exponent m. The initial data
is given by a linear combination of Gaussians, ρ0(·) = 0.3ψ1(· + 1, 0.0225) + 0.7ψ1(· −
1, 0.0225), and the grid spacing is h = 0.01. For m = 1, the infinite speed of propagation
of support of solutions to the heat equation is reflected both at the level of the density, for
which the gap between the two bumps fills quickly, and also in the particle trajectories, which
quickly spread to fill in areas of low mass. In contrast, for m = 2 and m = 3, we observe
finite speed of propagation of support, as well as the emergence of Barenblatt profiles as time
advances.

In Fig. 3, we analyze the rate of convergence of our numerical scheme in two dimensions.
We compute the error between numerical and exact solutions of the heat and porous medium
equations (m = 1, 2, 3), with respect to the 2-Wasserstein distance, L1-norm and L∞-
norm, and examine the scaling of the error with the grid spacing h. (Recall that ε = h0.99

throughout.) Plotting the errors on a logarithmic scale, we observe that the Wasserstein error
depends linearly on the grid spacing for all values of m. The L1-norm scales quadratically
for m = 1 and 2 and superlinearly for m = 3. Finally, the L∞-error scales quadratically for
m = 1, superlinearly for m = 2, and sublinearly for m = 3. This deterioration of the rate
of L∞-convergence for m = 3 is due to the sharp transition at the boundary of the exact
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Convergence Analysis: Two-Dimensional Diffusion

Fig. 3 Rate of convergence of blob method for two-dimensional heat and porous medium equations

solution; see the second row of Fig. 1. (The rate of convergence is similar in one dimension;
see Fig. 4 in the preprint version of this manuscript, arXiv:1709.09195.)

In Fig. 4, we simulate solutions to the nonlinear Fokker–Planck equation (V (·) = |·|2 /2,
W = 0, m = 2) and consider the rate of convergence to the steady state of the equation,
ψ2(0.25, x). In the top row, we compute the error between the numerical solution at time
t = 1.2 and the steady state with respect to the Wasserstein, L1-, and L∞-norms for various
choices of grid spacing h. We consider solutions with Barenblatt initial data (m = 2, τ =
0.15). We plot the error’s dependence on h with a logarithmic scale and compute the slope
of the line of best fit to determine the scaling relationship between the error and h. We
observe similar rates of convergence as in the case of the heat and porous medium equations;
see Fig. 3. In the bottom rows, we give snapshots of the evolution of the blob method
solution, as it converges to the steady state. We consider Barenblatt initial data (m = 2,
τ = 0.15) and double bump initial data given by a linear combination of Barenblatts, ρ0(x) =
0.7ψ2(x − (1.25, 0), 0.1)+ 0.3ψ2(x + (1.25, 0), 0.1). The grid spacing is h = 0.02.

In the remaining numerical examples,we apply ourmethod to simulate solutions ofKeller–
Segel type equations, with the interaction potential W given by 2χ log |·| for χ > 0. In one
dimension, the derivative of this potential is not integrable, and we remove its singularity it
setting it equal to 2χ/ε for all x ∈ R

d such that |x | < ε. In two dimensions, the gradient of
this potential is integrable, and we regularize it by convolving it with a mollifier ϕε , as done
in previous work by the second author on a blob method for the aggregation Eq. [36].

In Fig. 5, we consider the one-dimensional variant of the Keller–Segel equation (V = 0,
W (·) = 2χ log |·|, m = 1) studied in [18]. Its interest is that it has a defined critical value
χ for unit mass leading to the dichotomy of blow-up versus global existence. For χ = 1.5

123

http://arxiv.org/abs/1709.09195


A blob method for diffusion Page 39 of 53 53

Fokker–Planck: Two Dimensions
Rate of Convergence to Steady State

Evolution of Density: Barenblatt and double bump initial data
t = 0.0 t = 0.6 t = 1.2

t = 0.0 t = 0.6 t = 1.2

Fig. 4 Top row: Error between numerical solutions and steady state. Bottom rows: Snapshots of the evolution
towards steady state

One-Dimensional Keller–Segel Equation: Blow-up
Evolution of Second Moment Evolution of Particle Trajectories

Fig. 5 Left: Comparison of the evolution of the second moment along exact solutions (solid line) with blob
method solutiosn (dashed line) and previous numerical results by the DGF particle method [25]. Right:
Evolution of particle trajectories, with colors indicating the relative mass of each particle
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One-Dimensional Nonlinear Keller–Segel Equation: Convergence to Steady State
Evolution of Second Moment Evolution of Particle Trajectories

Fig. 6 Left: Evolution of the second moment. Right: Evolution of particle trajectories, with colors indicating
the relative mass of each particle

and initial data of mass one, solutions blow up in finite time. We consider initial data given
by a Gaussian ψ1(τ, ·), τ = 0.25, discretized on the interval [− 4.5, 4.5] with grid spacing
h = 0.009.Wecompare the evolutionof the secondmoment of our blobmethod solutionswith
the second moment of the exact solution. We also compare our results with those obtained in
previous work via a one-dimensional Discrete Gradient Flow (DGF) particle method [25,30].
By refining our spatial grid with respect to the DGF particle method, we observe modest
improvements. (Alternative simulations, with similar spatial and time discretizations as used
in the DGF method, yielded similar results as obtained by DGF.) The blow-up of solution
is not only evident in the second moment, which converges to zero linearly in time, but
also in the evolution of the particle trajectories. In particular, we observe particle trajectories
merging on several occasions as time advances.

In Fig. 6, we consider a nonlinear variant of the Keller–Segel equation (V = 0, W (·) =
2χ log |·|, m = 2) in one dimension, with initial data and discretization as in Fig. 5. We
observe the convergence to a steady state both at the level of the second moment and the
particle trajectories.

In Figs. 7, 8 and 9 we consider the classical Keller–Segel equation (V = 0, W (·) =
1/(2π) log |·|, m = 1) in two dimensions. In Figs. 7 and 8, the initial datum is given by a
Gaussian ψ1(τ, ·), τ = 0.16, scaled to have mass that is either supercritical (> 8π), critical
(= 8π), or subcritical (< 8π ) with respect to blowup behavior. In particular, for supercritical
initial data, solutions blow up in finite time [13,41]. In Fig. 7, we consider the evolution of the
second moment for solutions obtained for fixed grid spacing h = 0.03̄ and varying mass 7π ,
8π , and 9π . We observe that the second moment depends linearly on time, and we compute
its slope using the line of best fit. We then analyze how the slope of this line converges to the
theoretically predicted slope as the grid spacing h → 0.

In Fig. 8, we consider the evolution of the second moment for the supercritical mass
solution from Fig. 7 on a longer time interval. As in the one-dimensional case (see Fig. 5),
we are able to get approximately halfway to the time when the second moment becomes zero
before the second moment of our numerical solution begins to peel away from the second
moment of the exact solution. Indeed, one of the benefits of our blob method approach is
that the numerical method naturally extends to two and more dimensions, and we observe
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Two-Dimensional Keller–Segel Equation: Analysis of Blowup Behavior
Evolution of Second Moment, h = 0.03̄ Convergence of Second Moment

Fig. 7 Left: Evolution of second moment of numerical solutions. Right: Convergence of slope of second
moment to theoretically predicted slope (solid line)

Two-Dimensional Keller–Segel Equation: Blowup with Supercritical Mass 9π
Evolution of Second Moment Evolution of Particle Trajectories

Fig. 8 Left: Comparison of second moment of numerical solution (dashed line) to exact solution (solid line).
Right: Evolution of particle trajectories, colored according to the relative mass of each trajectory

123



53 Page 42 of 53 J. A. Carrillo et al.

Two-Dimensional Keller–Segel Equation: Evolution of Second Moment

Fig. 9 We plot the evolution of the second moment along particle solutions to the two-dimensional Keller–
Segel equation, with initial data given by constant multiples of the linear combination of Barenblatts from
Fig. 4. In particular, we consider constant multiples M = 7π, 8π, 9π . We estimate the slope of the line using
the line of best fit

similar numerical performance independent of the dimension. We also plot the evolution of
particle trajectories, observing the tendency of trajectories in regions of larger mass to be
driven largely by pairwise attraction, while trajectories in regions of lower mass feel more
strongly the effects of diffusion.

Finally, in Fig. 9, we consider the evolution of the second moment for double bump initial
data, with initial mass 7π , 8π , and 9π . The slopes of the second moment agree well with the
theoretically predicted slopes given in Fig. 7.
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Appendix A. Proofs of preliminary results

We now turn to the proofs of some of the elementary lemmas and propositions from Sects. 2
and 3 . We begin with the proof of the mollifier exchange lemma.

Proof of Lemma 2.2 By the Lipschitz continuity of f ,

∣

∣

∣

∣

∫

ζε ∗ ( f ν) dσ −
∫

(ζε ∗ ν) f dσ

∣

∣

∣

∣
≤
∫

Rd

∫

Rd
ζε(x − y)| f (x)− f (y)| d|ν|(y) d|σ |(x)

≤ L f

∫

Rd

∫

Rd
ζε(x − y)|x − y| d|ν|(y) d|σ |(x)

Set p := (q − d)/q > 0. Decomposing the domain of the integration of |ν| into Bε p (x) and
R
d\Bε p (x), we may bound the above quantity by

L f

∫

Rd

(
∫

Bεp (x)
ζε(x − y)|x − y| d|ν|(y) dx +

∫

Rd\Bεp (x)
ζε(x − y)|x − y| d|ν|(y)

)

d|σ |(x).
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By the decay assumption on ζ (see Assumption 2.1), for all x, y ∈ R
d with |x − y| > ε p we

have

ζε(x − y)|x − y| = ζ

(

x − y

ε

) |x − y|
εd

≤ Cζ |x − y|1−qεq−d ≤ Cζ ε
p. (52)

Thus, we conclude our result by estimating the above quantity by

ε pL f

∫

Rd
(ζε ∗ |ν|) d|σ |(x)+ ε pL f Cζ |σ |(Rd)|ν|(Rd).

��

We now give the proof that if με

∗
⇀ μ, then ϕε ∗ με

∗
⇀ μ.

Proof of Lemma 2.3 By [3, Remark 5.1.6], it suffices to show that ϕε ∗ με converges to μ

in distribution, that is, in the duality with smooth, compactly supported functions. For all
f ∈ C∞c (Rd),

∣

∣

∣

∣

∫

Rd
f d(ϕε ∗ με)−

∫

Rd
f dμ

∣

∣

∣

∣
≤
∣

∣

∣

∣

∫

Rd
f d(ϕε ∗ με)−

∫

Rd
f dμε

∣

∣

∣

∣
+
∣

∣

∣

∣

∫

Rd
f dμε −

∫

Rd
f dμ

∣

∣

∣

∣

Since με

∗
⇀ μ, the second term goes to zero. We bound the first term as follows:

∣

∣

∣

∣

∫

Rd
f d(ϕε ∗ με)−

∫

Rd
f dμε

∣

∣

∣

∣
=
∣

∣

∣

∣

∫

Rd

∫

Rd
( f (y)− f (x))ϕε(x − y) dy dμε(x)

∣

∣

∣

∣

≤ ‖∇ f ‖L∞(Rd )

∫

Rd

∫

Rd
|x − y|ϕε(x − y) dy dμε(x)

= ‖∇ f ‖L∞(Rd )

∫

Rd

∫

Rd

∣

∣

∣

z

εd

∣

∣

∣ϕ
( z

ε

)

dz dμε(x)

= ε‖∇ f ‖L∞(Rd )

∫

Rd
|z|ϕ(z) dz,

which goes to zero as ε → 0. ��

Next, we prove the inequalities relating the regularized internal energies to the unregular-
ized internal energies.

Proof of Proposition 3.8 We begin with (11). To prove the left inequality, we may assume
without loss of generality that μ ∈ D(F). First, we show the result for the entropy (m = 1).
Note that

F1(μ)− F1
ε (μ) = H(μ|ϕε ∗ μ),

where H is the relative entropy; that is, for all ν ∈ P(Rd),

H(μ|ν) :=
{
∫

log
(

dμ
dν

)

dμ if μ� ν,

+∞ otherwise.

By Jensen’s inequality for the convex function s �→ s log s, the relative entropy is nonnega-
tive, which gives the result. Now, we show the left inequality in (11) for 1 < m ≤ 2. By the
above-the-tangent property of the concave function Fm and Hölder’s inequality, we get
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Fm(μ)− Fm
ε (μ) = 1

m − 1

∫

(

μm−1 − (ϕε ∗ μ)m−1
)

dμ ≥
∫

(μ− ϕε ∗ μ) μm−2 dμ

≥ −‖μ− ϕε ∗ μ‖Lm (Rd )‖μm−1‖Lm/(m−1)(Rd )

= −‖μ− ϕε ∗ μ‖Lm (Rd )‖μ‖m−1Lm (Rd )
.

Since μ ∈ D(Fm) implies μ ∈ Lm(Rd), the first term goes to zero as ε → 0 and the second
term remains bounded. This gives the result.

We now turn to the right inequality in (11) in the case 1 ≤ m ≤ 2. By the fact that
ϕε = ζε ∗ ζε and Jensen’s inequality for the concave function Fm , for all x ∈ R

d we have

Fm(ϕε ∗ μ(x)) = Fm

(∫

Rd
ζε(y)ζε ∗ μ(x − y) dy

)

≥
∫

Rd
ζε(y)Fm (ζε ∗ μ(x − y)) dy = ζε ∗ (Fm ◦ (ζε ∗ μ)) (x).

Consequently, we deduce

Fm
ε (μ) =

∫

Rd
Fm(ϕε ∗ μ(x)) dμ(x) ≥

∫

Rd
ζε ∗ (Fm ◦ (ζε ∗ μ)) (x) dμ(x)

=
∫

Rd
Fm(ζε ∗ μ(x)) d(ζε ∗ μ)(x) = Fm (ζε ∗ μ) .

Now, we show (12). Since Fm is convex for m ≥ 2, this is simply a consequence of
reversing the inequalities in the last two inequalities.

Finally, we consider the lower bounds (13). When m = 1, these follow from the right
inequality in (11), a Carleman-type estimate [30, Lemma 4.1] ensuring that Fm

ε (ζε ∗ μ) ≥
−(2π/δ)d/2 − δM2(ζε ∗ μ) for all δ > 0, and the fact that

∫

Rd
ζε(y)|x + y|2 dy ≤ 2|x |2 + 2M2(ζε) !⇒ M2(ζε ∗ μ) ≤ 2M2(μ)+ 2M2(ζε)

= 2M2(μ)+ 2ε2M2(ζ ).

When m > 1, we simply use that Fm ≥ 0. ��
Wenowgive the proof that, for all ε > 0, the regularized energies are lower semicontinuous

with respect to weak-* convergence (m > 1) and Wasserstein convergence (m = 1), where
in the latter case, we require ϕ to be a Gaussian.

Proof of Proposition 3.9 First, we note that for any sequence (μn)n ⊂ P(Rd) andμ ∈ P(Rd)

such that μn
∗
⇀ μ and any sequence xn → x , we have

|ϕε ∗ μn(xn)− ϕε ∗ μ(x)|
=
∣

∣

∣

∣

∫

ϕε(xn − y)dμn(y)−
∫

ϕε(x − y)dμ(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

(ϕε(xn − y)− ϕε(x − y)) dμn(y)

∣

∣

∣

∣
+
∣

∣

∣

∣

∫

ϕε(x − y)dμn(y)−
∫

ϕε(x − y)dμ(x)

∣

∣

∣

∣

≤ |xn − x |‖∇ϕε‖∞ +
∣

∣

∣

∣

∫

ϕε(x − y)dμn(y)−
∫

ϕε(x − y)dμ(x)

∣

∣

∣

∣

n→+∞−−−−−→ 0, (53)

since ϕε(x − ·) ∈ Cb(R
d).
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We now show (i). Suppose μn
∗
⇀ μ. By Lemma B.3, we have

lim inf
n→∞ Fm

ε (μn) = lim inf
n→+∞

1

m − 1

∫

Rd
(ϕε ∗ μn)

m−1dμn

≥ 1

m − 1

∫

Rd
lim inf

n→+∞,x ′→x
(ϕε ∗ μn(x

′))m−1dμ(x).

By inequality (53),

lim inf
n→+∞,x ′→x

(ϕε ∗ μn(x
′))m−1 = (ϕε ∗ μ(x))m−1.

Combining the two previous inequalities, we obtain lim infn→∞ Fm
ε (μn) ≥ Fm

ε (μ), giving
the result.

Next, we show (ii). Suppose μn → μ in the Wasserstein metric. Since ϕ is a Gaussian,
there exist x0 ∈ R

d and C0,C1 ∈ R so that, for n sufficiently large,

log(ϕε ∗ μn(x)) ≥ C0|x − x0|2 + C1, (54)

Define fn := log(ϕε ∗ μn) and q(·) := C0| · −x0|2 + C1. Then, by Lemma B.3, we have

lim inf
n→+∞

∫

Rd
( fn(x)− q(x))dμn(x) ≥

∫

Rd
lim inf

n→+∞,x ′→x
( fn(x

′)− q(x ′))dμ(x). (55)

Since μn → μ in the Wasserstein metric,

lim
n→+∞

∫

Rd
(−q(x))dμn(x) =

∫

Rd
(−q(x))dμ(x) =

∫

Rd
lim inf

n→+∞,x ′→x
(−q(x ′))dμ(x).

(56)

Furthermore, by (53) and the fact that log(·) is continuous on (0,+∞),

lim inf
n→+∞,x ′→x

fn(x
′) = lim inf

n→+∞,x ′→x
log(ϕε ∗ μn(x

′)) = log(ϕε ∗ μ(x)). (57)

Thus, combining (55), (56), and (57), we obtain,

F1
ε (μn) = lim inf

n→+∞

∫

Rd
fn(x)dμn(x) ≥

∫

Rd
log(ϕε ∗ μ(x))dμ(x) = F1

ε (μ),

which gives the result. ��

Nowwe turn to the proof that the regularized energies are differentiable along generalized
geodesics.

Proof of Proposition 3.10 By definition, for all α ∈ [0, 1],

Fε(μ
2→3
α ) =

∫∫

F (ϕε ∗ μα((1− α)x + αy)) dγ (x, y).

Therefore, we deduce

Fε(μ
2→3
α )−Fε(μ2)=

∫∫∫

(

F
(

ϕε ∗ μ2→3
α ((1− α)y+αz))

)− F (ϕε ∗ μ1(y))
)

dγ (x, y, z)

=
∫ 1

0

∫∫∫

F ′(cs,α(y, z))
(

ϕε ∗ μ2→3
α ((1− α)y + αz))− ϕε ∗ μ1(y)

)

dγ (x, y, z) ds,
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where cs,α(y, z) = (1− s)ϕε ∗μ1(y)+ sϕε ∗μ2→3
α ((1−α)y+αx). Using Taylor’s theorem

compute

ϕε ∗ μ2→3
α ((1− α)y + αz))− ϕε ∗ μ1(y)

=
∫∫∫

(ϕε((1− α)(y − v)+ α(z − w))− ϕε ∗ (y − v)) dγ (u, v, w)

=
∫∫∫

(α∇ϕε(y − v) · (z − w − (y − v))+ Dα(y, z, v, w)) dγ (u, v, w),

where Dα(y, z, v, w) is a term depending on the Hessian of ϕε satisfying
∣

∣

∣

∣

∫∫∫

Dα(y, z, v, w) dγ (u, v, w)

∣

∣

∣

∣

≤ α2

2

∥

∥D2ϕε

∥

∥

L∞(Rd )

∫∫

|z − w − (y − v)|2 dγ (u, v, w)

≤ 2α2
∥

∥D2ϕε

∥

∥

L∞(Rd )

(

|z|2 + |y|2 +
∫

|w|2 dμ3(w)+
∫

|v|2 dμ2(v)

)

Hence, since F ′ is nondecreasing,

Fε(μ
2→3
α )− Fε(μ2)

= α

∫ 1

0

∫∫∫ ∫∫∫

F ′(cs,α(y, z))∇ϕε(y − v) · (z − w − (y − v)) dγ (u, v, w) dγ (x, y, z) ds + Cα,

where |Cα| ≤ 4α2‖D2ϕε‖L∞(Rd )F
′(‖ϕε‖L∞(Rd ))(

∫ |x |2 dμ2(x)+
∫ |x |2 dμ3(x)). Note that

cs,α(y, z) converges pointwise to ϕε ∗ μ2(y) as α → 0 since
∣

∣ϕε ∗ μ2→3
α ((1− α)y + αz) −ϕε ∗ μ2(y)|

=
∣

∣

∣

∣

∫∫∫

(ϕε((1− α)(y − v)+ α(z − w))− ϕε(y − v)) dγ (u, v, w)

∣

∣

∣

∣

≤ α‖∇ϕε‖L∞(Rd )

(

|z| + |y| +
∫

|w| dμ3(w)+
∫

|v| dμ2(v)

)

.

Thus, to complete the result, it suffices to show that there exists g ∈ L1(γ ⊗ γ ) so that

F ′(cs,α(y, z)) |∇ϕε(y − v) · (z − w − (y − v))| ≤ g(y, z, v, w),

since the result then follows by the dominated convergence theorem. Since F ′ is nondecreas-
ing we may take

g(y, z, v, w) = F ′
(‖ϕε‖L∞(Rd )

) ‖∇ϕε‖L∞(Rd ) |z − w − (y − v)|,
which ends the proof. ��

Next, we apply the result of the previous proof to characterize the subdifferential of the
regularized energies.

Proof of Proposition 3.12 Suppose v is given by Eq. (16). This part of the proof is closely
inspired by that of [24, Proposition 2.2]. For all x, y ∈ R

d define G(α) = F(ϕε ∗ μα((1 −
α)x+αy)) for all α ∈ [0, 1], whereμα = ((1−α)π1+απ2)#γ , with some γ ∈ �o(μ,μ1),
connects μ0 = μ and μ1. Now define

f (α) = G(α)− G(0)

α
− λα

2

(|x − y|2 +W 2
2 (μ0, μ1)

)

for all α ∈ [0, 1],
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where λ = −2F ′(‖ϕε‖L∞(Rd ))‖D2ϕε‖L∞(Rd ) = λF ; see (15). We write [a, b]α := (1 −
α)a+ αb for any a, b ∈ R

d . Let us compute the first two derivatives of G for all α ∈ [0, 1]:

G ′(α) = F ′(ϕε ∗ μα([x, y]α))

∫

Rd×Rd
(y − x + u − v) · ∇ϕε([x − u, y − v]α) dγ (u, v),

(58)

and

G ′′(α) = F ′′(ϕε ∗ μα([x, y]α))

(∫

Rd×Rd
(y − x + u − v) · ∇ϕε([x − u, y − v]α) dγ (u, v)

)2

+ F ′(ϕε ∗ μα([x, y]α))

∫

Rd×Rd
(y − x + u − v)D2ϕε([x − u, y − v]α)(y − x + u − v) dγ (u, v).

Since F ′′ ≥ 0, F ′ ≥ 0 and
∥

∥D2ϕε

∥

∥

L∞(Rd )
is finite, we have

G ′′(α) ≥ − F ′(‖ϕε‖L∞(Rd ))
∥

∥D2ϕε

∥

∥

L∞(Rd )

∫

Rd×Rd
|y − x + u − v|2 dγ (u, v)

≥ − 2F ′(‖ϕε‖L∞(Rd ))
∥

∥D2ϕε

∥

∥

L∞(Rd )

∫

Rd×Rd

(|y − x |2 + |u − v|2) dγ (u, v)

= λ
(|y − x |2 +W 2

2 (μ0, μ1)
)

.

(59)

Now, by Taylor’s theorem,

f (α) = G ′(0)+
∫ α

0

α − s

α
G ′′(s) ds − λα

2

(|x − y|2 +W 2
2 (μ0, μ1)

)

,

and therefore, using (59) leads to

f ′(α) = 1

α2

∫ α

0
sG ′′(s) ds − λ

2

(|x − y|2 +W 2
2 (μ0, μ1)

) ≥ 0,

which shows that f is nondecreasing, and so f (1) ≥ limα→0 f (α), which implies (after
integrating against dγ (x, y))

Fε(μ1)− Fε(μ0) ≥
∫

Rd×Rd
lim
α→0

(

G(α)− G(0)

α

)

dγ (x, y)+ λW 2
2 (μ0, μ1)

=
∫

Rd×Rd
G ′(0) dγ (x, y)+ λW 2

2 (μ0, μ1).

Then, by (58) and antisymmetry of ∇ϕε, compute
∫

Rd×Rd
G ′(0) dγ (x, y) =

∫

Rd×Rd

∫

Rd×Rd
F ′(ϕε ∗ μ0(x))(y − x + u − v)

· ∇ϕε(x − u) dγ (u, v) dγ (x, y)

=
∫

Rd×Rd
F ′(ϕε ∗ μ0(x))∇ϕε ∗ μ0(x) · (y − x) dγ (x, y)

+
∫

Rd×Rd
∇ϕε ∗ (F ′ ◦ (ϕε ∗ μ0)μ0)(u) · (v − u) dγ (u, v)

=
∫

Rd×Rd
∇ δFε

δμ0
(x) · (y − x) dγ (x, y).
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Hence

Fε(μ1)− Fε(μ0) ≥
∫

Rd×Rd
∇ δFε

δμ0
(x) · (y − x) dγ (x, y)+ λW 2

2 (μ0, μ1),

which shows that δFε/δμ0 ∈ ∂Fε(μ0). We now prove that v ∈ Tanμ P2(R
d). Consider a

vector-valued function ξ ∈ C∞c (Rd)d , and for any x, y ∈ R
d define H(α) = F(

∫

Rd ϕε(x −
y + α(ξ(x)− ξ(y)) dμ(y)) for all α ∈ [0, 1]. Then

H ′(0) = F ′(ϕε ∗ μ(x))
∫

Rd
(ξ(x)− ξ(y)) · ∇ϕε(x − y) dμ(y).

Now compute, using the antisymmetry of ∇ϕε,

lim
α→0

Fε((id+αξ)#μ)− Fε(μ)

α
= lim

α→0

∫

Rd

H(α)− H(0)

α
dμ(x) =

∫

Rd
H ′(0) dμ(x)

=
∫

Rd
F ′(ϕε ∗ μ(x))∇ϕε ∗ μ(x) · ξ(x) dμ(x)

+
∫

Rd
∇ϕε ∗ (F ′ ◦ (ϕε ∗ μ)μ)(x) · ξ(x) dμ(x)

=
∫

Rd
∇ δFε

δμ
(x) · ξ(x) dμ(x),

where passing the limit α → 0 inside the integral in the first line is justified by the fact that
H ′ is bounded. Then, by the definition of the local slope of Fε,

lim inf
α→0

Fε((id+αξ)#μ)− Fε(μ)

W2((id+αξ)#μ,μ)
≥ −|∂Fε|(μ).

Therefore, by the previous computation,
∫

Rd
∇ δFε

δμ
(x) · ξ(x) dμ(x)

≥ −|∂Fε|(μ) lim inf
α→0

W2((id+αξ)#μ,μ)

α
≥ −|∂Fε|(μ)‖ξ‖L2(μ;Rd ),

since, by definition of the 2-Wasserstein distance,

lim sup
α→0

W2((id+αξ)#μ,μ)

α
≤ ‖ξ‖L2(μ;Rd ).

Then, by replacing ξ with −ξ , by arbitrariness of ξ and by density of C∞c in L2(μ;Rd), we
get

‖v‖L2(μ;Rd ) =
∥

∥

∥

∥
∇ δFε

δμ

∥

∥

∥

∥

L2(μ;Rd )

≤ |∂Fε|(μ),

which shows the desired result. Since |∂Fε|(μ) is the unique minimal norm element of ∂Fε,
this also shows that we actually have equality in the right-hand side above.

Suppose now that v ∈ ∂Fε(μ) ∩ Tanμ P2(R
d). Fix ψ ∈ C∞c (Rd) and define μα =

(id+α∇ψ)#μ and μ̂α = (id−α∇ψ)#μ for all α ∈ [0, 1]. For α sufficiently small, x2/2 +
αψ(x) is convex and id+α∇ψ is the optimal transport map from μ to μα , so �o(μ,μα) =
{id×(id+α∇ψ)}. Similarly, �o(μ̂α, μ) = {id×(id−α∇ψ)}. Since v ∈ ∂Fm

ε (μ), taking
ν = μα in Definition 2.7 of the subdifferential, for α sufficiently small, gives

Fε(μα)− Fε(μ) ≥
∫

〈v, α∇ψ〉 dμ+ o(α‖∇ψ‖L2(μ)),
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and

Fε(μ̂α)− Fε(μ) ≤
∫

〈v, α∇ψ〉 dμ+ o(α‖∇ψ‖L2(μ)),

Combining this with Proposition 3.10, we obtain
∫

〈v,∇ψ〉 dμ ≤ lim
α→0

Fε(μα)− Fε(μ)

α
= d

dα
Fε(μα)

∣

∣

∣

∣

α=0
= d

dα
Fε(μ̂α)

∣

∣

∣

∣

α=0

= lim
α→0−

Fε(μ̂α)− Fε(μ)

α
≤
∫

〈v,∇ψ〉 dμ.

Rewriting the expression from Eq. (14) gives
∫

〈v,∇ψ〉 dμ

= d

dα
Fε(μα)

∣

∣

∣

∣

α=0
=
∫

〈∇ϕε ∗
(

F ′ ◦ (ϕε ∗ μ)μ
)+ F ′(ϕε ∗ μ)∇ϕε ∗ μ,∇ψ

〉

dμ.

Thus, forw = v−∇ϕε ∗
(

F ′ ◦ (ϕε ∗ μ)μ
)+F ′(ϕε ∗μ)∇ϕε ∗μ, we have

∫ 〈w,∇ψ〉 dμ = 0,
i.e.∇·(wμ) = 0 in the sense of distribution.By [3, Proposition 8.4.3], since v ∈ Tanμ P2(R

d)

we get ‖v − w‖L2(μ;Rd ) ≥ ‖v‖L2(μ;Rd ). Since we have already shown that the vector in (16)
is the element of minimal norm of ∂Fε, we get that ‖v − w‖L2(μ;Rd ) ≤ ‖v‖L2(μ;Rd ), and
so ‖v − w‖L2(μ;Rd ) = ‖v‖L2(μ;Rd ). Again using [3, Proposition 8.4.3], we obtain w = 0,
which ends the proof. ��

Finally, we prove the characterization of the subdifferential of the full regularized energies
Em

ε .

Proof of Corollary 3.13 Write λV ∈ R and λW ∈ R the semiconvexity constants of V and
W , respectively. The proof follows the same steps as that of Proposition 3.12 with the only
difference being the definitions of the functions G, f and H . Given x, y ∈ R

d , we define,
for all α ∈ [0, 1],
G(α) = F (ϕε ∗ μα((1− α)x + αy))+ V ((1− α)x + αy)+ 1

2W ∗ μα((1− α)x + αy),

f (α) = G(α)− G(0)

α
− (λ+ λW )α

2

(|x − y|2 +W2(μ0, μ1)
)− λVα

2
|x − y|2,

and

H(α) = F

(∫

Rd
ϕε(x − y + α(ξ(x)− ξ(y)) dμ(y)

)

+ V (x

+αξ(y))+
∫

Rd
W (x − y + α(ξ(x)− ξ(y))) dμ(y),

where μ0, μ1, λ and ξ are as in the Proof of Proposition 3.12. ��

Appendix B. Weak convergence of measures

In this appendix, we recall several fundamental results on the weak convergence of measures.
We begin with a result due to Ambrosio, Gigli, and Savaré on convergence of maps with
respect to varying probability measures. This plays a key role in our proofs of both the
�-convergence of the energies and the � convergence of the gradient flows.
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Definition B.1 (weak convergence with varying measures; c.f. [3, Definition 5.4.3]) Given
a sequence (μn)n ⊂ P(Rd) converging in the weak-∗ topology to some μ ∈ P(Rd), we
say that a sequence (vn)n with vn ∈ L1(μn;Rd) for all n ∈ N converges weakly to some
v ∈ L1(μ;Rd) if

lim
n→∞

∫

Rd
f (x)vn(x) dμn(x) =

∫

Rd
f (x)v(x) dμ(x) for all f ∈ C∞c (Rd).

Furthermore, we say that (vn)n converges strongly to v in L p , p > 1, if

lim sup
n→∞

‖v‖L p(μn;Rd ) ≤ ‖v‖L p(μ;Rd ) .

Proposition B.2 (properties of convergence with varying measures; c.f. [3, Theorem 5.4.4])
Let (μn)n ⊂ P(Rd), μ ∈ P(Rd) and (vn)n be such that vn ∈ L1(μn;Rd) for all n ∈ N.

Suppose μn
∗
⇀ μ and supn∈N ‖vn‖L p(μn;Rd ) < ∞ for some p > 1. The following items

hold.

(i) There exists a subsequence of (vn)n converging weakly to some w ∈ L1(μ;Rd).
(ii) If (vn)n weakly converges to some v ∈ L1(μ;Rd), then

lim inf
n→∞ ‖vn‖L p(μn;Rd ) ≥ ‖v‖L p(μ;Rd ) for all p ≥ 1.

(iii) If (vn)n strongly converges in L p to some v ∈ L p(μ;Rd) and supn∈N Mp(μn) < ∞,
then

lim
n→∞

∫

f |vn |pdμn =
∫

f |v|pdμ for all f ∈ C∞c (Rd).

We close by recalling a generalization of Fatou’s lemma, for varying measures.

Lemma B.3 (Fatou’s lemma for varying measures; see, e.g., [45, Theorem 1.1], [4, Lemma

3.3]) Consisder a sequence (μn)n ⊂ P(Rd) and μ ∈ P(Rd) so that μn
∗
⇀ μ. Then for any

sequence ( fn)n of nonnegative functions on Rd , we have
∫

Rd
lim inf

n→+∞,x ′→x
fn(x

′) dμ(x) ≤ lim inf
n→∞

∫

Rd
fn(x) dμn(x).
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