6,449 research outputs found

    An Impossibility Result for High Dimensional Supervised Learning

    Full text link
    We study high-dimensional asymptotic performance limits of binary supervised classification problems where the class conditional densities are Gaussian with unknown means and covariances and the number of signal dimensions scales faster than the number of labeled training samples. We show that the Bayes error, namely the minimum attainable error probability with complete distributional knowledge and equally likely classes, can be arbitrarily close to zero and yet the limiting minimax error probability of every supervised learning algorithm is no better than a random coin toss. In contrast to related studies where the classification difficulty (Bayes error) is made to vanish, we hold it constant when taking high-dimensional limits. In contrast to VC-dimension based minimax lower bounds that consider the worst case error probability over all distributions that have a fixed Bayes error, our worst case is over the family of Gaussian distributions with constant Bayes error. We also show that a nontrivial asymptotic minimax error probability can only be attained for parametric subsets of zero measure (in a suitable measure space). These results expose the fundamental importance of prior knowledge and suggest that unless we impose strong structural constraints, such as sparsity, on the parametric space, supervised learning may be ineffective in high dimensional small sample settings.Comment: This paper was submitted to the IEEE Information Theory Workshop (ITW) 2013 on April 23, 201

    Discrimination on the Grassmann Manifold: Fundamental Limits of Subspace Classifiers

    Full text link
    We present fundamental limits on the reliable classification of linear and affine subspaces from noisy, linear features. Drawing an analogy between discrimination among subspaces and communication over vector wireless channels, we propose two Shannon-inspired measures to characterize asymptotic classifier performance. First, we define the classification capacity, which characterizes necessary and sufficient conditions for the misclassification probability to vanish as the signal dimension, the number of features, and the number of subspaces to be discerned all approach infinity. Second, we define the diversity-discrimination tradeoff which, by analogy with the diversity-multiplexing tradeoff of fading vector channels, characterizes relationships between the number of discernible subspaces and the misclassification probability as the noise power approaches zero. We derive upper and lower bounds on these measures which are tight in many regimes. Numerical results, including a face recognition application, validate the results in practice.Comment: 19 pages, 4 figures. Revised submission to IEEE Transactions on Information Theor

    Similarity Learning for Provably Accurate Sparse Linear Classification

    Full text link
    In recent years, the crucial importance of metrics in machine learning algorithms has led to an increasing interest for optimizing distance and similarity functions. Most of the state of the art focus on learning Mahalanobis distances (requiring to fulfill a constraint of positive semi-definiteness) for use in a local k-NN algorithm. However, no theoretical link is established between the learned metrics and their performance in classification. In this paper, we make use of the formal framework of good similarities introduced by Balcan et al. to design an algorithm for learning a non PSD linear similarity optimized in a nonlinear feature space, which is then used to build a global linear classifier. We show that our approach has uniform stability and derive a generalization bound on the classification error. Experiments performed on various datasets confirm the effectiveness of our approach compared to state-of-the-art methods and provide evidence that (i) it is fast, (ii) robust to overfitting and (iii) produces very sparse classifiers.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Random projections as regularizers: learning a linear discriminant from fewer observations than dimensions

    Get PDF
    We prove theoretical guarantees for an averaging-ensemble of randomly projected Fisher linear discriminant classifiers, focusing on the casewhen there are fewer training observations than data dimensions. The specific form and simplicity of this ensemble permits a direct and much more detailed analysis than existing generic tools in previous works. In particular, we are able to derive the exact form of the generalization error of our ensemble, conditional on the training set, and based on this we give theoretical guarantees which directly link the performance of the ensemble to that of the corresponding linear discriminant learned in the full data space. To the best of our knowledge these are the first theoretical results to prove such an explicit link for any classifier and classifier ensemble pair. Furthermore we show that the randomly projected ensemble is equivalent to implementing a sophisticated regularization scheme to the linear discriminant learned in the original data space and this prevents overfitting in conditions of small sample size where pseudo-inverse FLD learned in the data space is provably poor. Our ensemble is learned from a set of randomly projected representations of the original high dimensional data and therefore for this approach data can be collected, stored and processed in such a compressed form. We confirm our theoretical findings with experiments, and demonstrate the utility of our approach on several datasets from the bioinformatics domain and one very high dimensional dataset from the drug discovery domain, both settings in which fewer observations than dimensions are the norm

    Sharp generalization error bounds for randomly-projected classifiers

    Get PDF
    We derive sharp bounds on the generalization error of a generic linear classifier trained by empirical risk minimization on randomly projected data. We make no restrictive assumptions (such as sparsity or separability) on the data: Instead we use the fact that, in a classification setting, the question of interest is really ā€˜what is the effect of random projection on the predicted class labels?ā€™ and we therefore derive the exact probability of ā€˜label flippingā€™ under Gaussian random projection in order to quantify this effect precisely in our bounds

    Incremental Training of a Detector Using Online Sparse Eigen-decomposition

    Full text link
    The ability to efficiently and accurately detect objects plays a very crucial role for many computer vision tasks. Recently, offline object detectors have shown a tremendous success. However, one major drawback of offline techniques is that a complete set of training data has to be collected beforehand. In addition, once learned, an offline detector can not make use of newly arriving data. To alleviate these drawbacks, online learning has been adopted with the following objectives: (1) the technique should be computationally and storage efficient; (2) the updated classifier must maintain its high classification accuracy. In this paper, we propose an effective and efficient framework for learning an adaptive online greedy sparse linear discriminant analysis (GSLDA) model. Unlike many existing online boosting detectors, which usually apply exponential or logistic loss, our online algorithm makes use of LDA's learning criterion that not only aims to maximize the class-separation criterion but also incorporates the asymmetrical property of training data distributions. We provide a better alternative for online boosting algorithms in the context of training a visual object detector. We demonstrate the robustness and efficiency of our methods on handwriting digit and face data sets. Our results confirm that object detection tasks benefit significantly when trained in an online manner.Comment: 14 page
    • ā€¦
    corecore