7 research outputs found

    A weakly convergent fully inexact Douglas-Rachford method with relative error tolerance

    Full text link
    Douglas-Rachford method is a splitting algorithm for finding a zero of the sum of two maximal monotone operators. Each of its iterations requires the sequential solution of two proximal subproblems. The aim of this work is to present a fully inexact version of Douglas-Rachford method wherein both proximal subproblems are solved approximately within a relative error tolerance. We also present a semi-inexact variant in which the first subproblem is solved exactly and the second one inexactly. We prove that both methods generate sequences weakly convergent to the solution of the underlying inclusion problem, if any

    Projection-proximal methods for general variational inequalities

    Get PDF
    AbstractIn this paper, we consider and analyze some new projection-proximal methods for solving general variational inequalities. The modified methods converge for pseudomonotone operators which is a weaker condition than monotonicity. The proposed methods include several new and known methods as special cases. Our results can be considered as a novel and important extension of the previously known results. Since the general variational inequalities include the quasi-variational inequalities and implicit complementarity problems as special cases, results proved in this paper continue to hold for these problems

    Modified extragradient methods for solving variational inequalities

    Get PDF
    AbstractIn this paper, we propose two methods for solving variational inequalities. In the first method, we modified the extragradient method by using a new step size while the second method can be viewed as an extension of the first one by performing an additional projection step at each iteration and another optimal step length is employed to reach substantial progress in each iteration. Under certain conditions, the global convergence of two methods is proved. Preliminary numerical experiments are included to illustrate the efficiency of the proposed methods

    Error bounds for proximal point subproblems and associated inexact proximal point algorithms

    No full text
    corecore