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Abstract

In this paper, we consider and analyze some new projection-proximal methods for solving general
variational inequalities. The modified methods converge for pseudomonotone operators which is a
weaker condition than monotonicity. The proposed methods include several new and known methods
as special cases. Our results can be considered as a novel and important extension of the previously
known results. Since the general variational inequalities include the quasi-variational inequalities and
implicit complementarity problems as special cases, results proved in this paper continue to hold for
these problems.
© 2005 Published by Elsevier Inc.
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1. Introduction

General variational inequalities introduced and studied by Noor [1] have appeared as a
novel and useful generalization of the variational inequalities. It turned out that a class of
odd-order and nonsymmetric obstacle, free, moving, unilateral and equilibrium problems
arising in financial, economics, transportation, elasticity, optimization, pure and applied
sciences can be studied via the general variational inequalities; see [2–8]. This field is
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dynamic and is experiencing an explosive growth in both theory and applications: as con-
sequence, several numerical techniques including projection, the Wiener–Hopf equations,
auxiliary principle, decomposition and descent are being developed for solving various
classes of variational inequalities and related optimization problems. Projection methods
and its variants forms including the Wiener–Hopf equations represent important tools for
finding the approximate solution of variational and quasi-variational inequalities. The main
idea in this technique is to establish the equivalence between the variational inequalities
and the fixed-point problem by using the concept of projection. This alternative formula-
tion has played a significant part in developing various projection-type methods for solving
variational inequalities. It is well known that the convergence of the projection methods
requires that the operator must be strongly monotone and Lipschitz continuous. Unfortu-
nately these strict conditions rule out many applications of this method. This fact motivated
to modify the projection method or to develop other methods. The extragradient method
[4,5] overcome this difficulty by performing an additional forward step and a projection at
each iteration according to the double projection. This method can be viewed as predictor–
corrector method. Its convergence requires only that a solution exists and the monotone
operator is Lipschitz continuous. When the operator is not Lipschitz continuous or when
the Lipschitz continuous constant is not known, the extragradient method and its vari-
ant forms require an Armijo-like line search procedure to compute the step size with a
new projection need for each trial, which leads to expansive computation. To overcome
these difficulties, several modified projection and extragradient-type methods have been
suggested and developed for solving variational inequalities. One of these projection-type
methods is called the proximal point algorithm. Recently several modified proximal point
algorithms have been suggested and analyzed for solving monotone variational inequal-
ities. Inspired and motivated by the research going on in this direction, we suggest and
analyze a new modified projection method, which includes the classical proximal, extra-
gradient and modified double projection as special cases. Using essentially the idea and
technique of He, Yang and Yuan [9], we prove that the convergence of the new projection
method requires only pseudomonotonicity, which is a weaker condition than monotonicity.
In this respect, our results represent an improvement of the previous methods. The compar-
ison of this new method with the known methods is an interesting problem for the future
research. We would like to emphasize that the projection-type method suggested in this
paper can be considered as predictor–corrector-type method. Our results can be viewed as
significant and novel extension of the results of Solodov and Svaiter [10], He, Yang and
Yuan [9] and Noor [3–8,11]. The comparison of this new method with the existing ones is
an interesting problem for future research work.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·,·〉 and
‖ · ‖, respectively. Let K be a closed convex set in H and T ,g :H → H be continuous
(nonlinear) operators. We now consider the problem of finding u ∈ H : g(u) ∈ K such that

〈
T u,g(v) − g(u)

〉
� 0, ∀v ∈ H : g(v) ∈ K. (1)
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Problem (1) is called the general variational inequality which was introduced and studied
by Noor [1] in 1988. It has been shown that a large class of unrelated odd-order and non-
symmetric obstacle, unilateral, contact, free, moving, and equilibrium problems arising in
regional, physical, mathematical, engineering and applied sciences can be studied in the
unified and general framework of the general variational inequalities; see [1–8,11].

For g ≡ I , where I is the identity operator, problem (1) is equivalent to finding u ∈ K

such that

〈T u,v − u〉 � 0, ∀v ∈ K, (2)

which is known as the classical variational inequality introduced and studied by Stampac-
chia [12] in 1964. For the recent state of the art in variational inequalities, see [1–18] and
the references therein.

From now onward, we assume that g is onto K unless otherwise specified.
If N(u) = {w ∈ H : 〈w,v − u〉 � 0, ∀v ∈ K} is a normal cone to the convex set K at u,

then the general variational inequality (1) is equivalent to finding u ∈ H , g(u) ∈ K such
that

−T (u) ∈ N
(
g(u)

)
,

which are known as the general nonlinear equations.
If K∗ = {u ∈ H : 〈u,v〉 � 0, ∀v ∈ K} is a polar (dual) cone of a convex cone K in H ,

then problem (1) is equivalent to finding u ∈ H such that

g(u) ∈ K, T u ∈ K∗ and
〈
T u,g(u)

〉 = 0, (3)

which is known as the general complementarity problem. For g(u) = m(u) + K , where m

is a point-to-point mapping, problem (3) is called the implicit (quasi) complementarity
problem. If g ≡ I , then problem (3) is known as the generalized complementarity problem.
Such problems have been studied extensively in the literature, see the references.

For suitable and appropriate choice of the operators and spaces, one can obtain several
classes of variational inequalities and related optimization problems.

We now recall the following well-known result and concepts.

Lemma 2.1. For a given z ∈ H , u ∈ K satisfies the inequality

〈u − z, v − u〉 � 0, ∀v ∈ K, (4)

if and only if

u = PK [z],
where PK is the projection of H onto K . Also the projection operator PK is nonexpansive
and satisfies the inequality

∥∥PK [z] − u
∥∥2 � ‖z − u‖2 − ∥∥z − PK [z]∥∥2

. (5)

Definition 2.1. ∀u,v ∈ H , the operator T :H → H is said to be

(i) g-monotone, if
〈
T u − T v,g(u) − g(v)

〉
� 0;
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(ii) g-pseudomonotone, if
〈
T u,g(v) − g(u)

〉
� 0 implies

〈
T v,g(v) − g(u)

〉
� 0.

For g ≡ I , Definition 2.1 reduces to the usual definition of monotonicity, and
pseudomonotonicity of the operator T . Note that monotonicity implies pseudomonotonic-
ity but the converse is not true; see [17].

3. Main results

In this section, we use the projection technique to suggest and analyze a class of new
projection methods for solving general variational inequalities (1). For this purpose, we
need the following result, which can be proved by invoking Lemma 2.1.

Lemma 3.1. The function u ∈ H , g(u) ∈ K is a solution of (1) if and only if u ∈ H satisfies
the relation

g(u) = PK

[
g(u) − ρT u

]
, (6)

where ρ > 0 is a constant and g is onto K .

Lemma 3.1 implies that problems (1) and (6) are equivalent. This alternative formulation
is very important from the numerical analysis point of view.

We now define the residue vector R(u) by the relation

R(u) = g(u) − PK

[
g(u) − ρT u

]
. (7)

From Lemma 3.1, it follows that u ∈ H is a solution of (1) if and only if u ∈ H is a zero of
the equation

R(u) = 0. (8)

For a positive constant γ, we can rewrite Eq. (8) as

g(u) = g(u) − γR(u) := g(u) − γ
{
g(u) − PK

[
g(u) − ρT u

]}
. (9)

This fixed-point formulation can be used to suggest the following iterative method.

Algorithm 3.1. For a given u0 ∈ H , compute the approximate solution un+1 by the iterative
scheme

g(un+1) = PK

[
g(un) − γnR(un+1)

]

= PK

[
g(un) − γn

{
g(un) − PK

[
g(un) − ρT un+1

]}]
, n = 0,1,2, . . . ,

or equivalently

g(yn) = PK

[
g(un) − ρT un+1

]
,

g(un+1) = PK

[
g(un) − γn

{
g(un) − g(yn)

}]
, n = 0,1,2, . . . ,

which can be considered as a proximal point method and appears to be a new one. Note
that for γn = 1, Algorithm 3.1 reduces to:
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Algorithm 3.2. For a given u0 ∈ H , compute the approximate solution un+1 by the iterative
scheme

g(un+1) = PK

[
g(un) − ρT un+1

]
, n = 0,1,2 . . . ,

which is known as the proximal method. In recent years, proximal methods have been
considered and studied extensively. Several conditions have been studied which are easy
to implement and to accelerate the convergence; see [9–11,13,16].

We use the technique of updating the solution, which has been used to suggest and ana-
lyze various two-step and three-step forward–backward splitting type methods for solving
variational inequalities and related optimization problems. This technique is mainly due to
Noor [4]. To this end, we can rewrite Eq. (6) in the form

g(y) = PK

[
g(u) − ρT u

]
, (10)

g(u) = PK

[
g(y) − ρTy

]
. (11)

These equivalent formulations have been used to suggest and analyze the following itera-
tive methods for solving the general variational inequalities (1).

Algorithm 3.3. For a given u0 ∈ H , calculate the approximate solution un+1 by the itera-
tive schemes

g(yn) = PK

[
g(un) − ρT un+1

]
,

g(un+1) = PK

[
g(yn) − ρTyn

]
, n = 0,1,2,3, . . . .

Algorithm 3.3 can be viewed as a two-step projection-proximal method. Algorithm 3.3 is
quite different from the extragradient method.

Now we look at Algorithm 3.3 from a different angle. Consider g(y) defined by (10) as
an approximate solution of the general variational inequality (1) and define

g(w) = PK

[
g(y) − ρTy

]
, (12)

g(z) = PK

[
g(u) − ρT w

]
. (13)

We use this formulation to suggest the following iterative method

Algorithm 3.4. For a given u0 ∈ H , calculate the approximate solution un+1 by the itera-
tive schemes

g(yn) = PK

[
g(un) − ρT un+1

]
,

g(wn) = PK

[
g(yn) − ρTyn

]
,

g(un+1) := g(zn) = PK

[
g(un) − ρT wn

]
, n = 0,1,2, . . . ,

which is called the modified proximal-extragradient method and appears to be a new one.
Note that for wn = yn, Algorithm 3.4 reduces to
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Algorithm 3.5. For a given u0 ∈ H , compute the approximate solution un+1 by the iterative
schemes

g(yn) = PK

[
g(un) − ρT un+1

]
,

g(un+1) = PK

[
g(un) − ρTyn

]
, n = 0,1,2, . . . .

For a positive constant α, consider

g(u) = g(u) − α
(
g(u) − g(z)

)
. (14)

Here the positive constant α can be viewed as a step length along the direction −(g(u) −
g(z)).

We use this fixed-point formulation to suggest the following iterative method.

Algorithm 3.6. For a given u0 ∈ H , compute the following iterative schemes:

g(yn) = PK

[
g(un) − ρnT un+1

]
,

g(wn) = PK

[
g(yn) − ρnTyn

]
,

g(zn) = PK

[
g(un) − ρnT wn

]
,

g(un+1) = PK

[
g(un) − α

(
g(un) − g(zn)

)]
, n = 0,1,2, . . . , (15)

α = ‖g(zn) − g(wn)‖2 + ‖g(un) − g(zn)‖2 − Δ(wn)

2‖g(un) − g(wn)‖2
, (16)

where

Δ(wn) � ν
(∥∥g(zn) − g(wn)

∥∥2 + ∥∥g(un) − g(zn)
∥∥2)

, ν < 1

= ν
{
2
〈
g(wn) − g(zn), g(wn) − g(un) + ρnT wn

〉

− ∥∥g(wn) − g(zn)
∥∥2} (17)

and

Δ(wn) = 2
〈
g(wn) − g(zn), g(wn) − g(zn) + ρnT wn

〉 − ∥∥g(wn) − g(zn)
∥∥2

, (18)

which is known as the inexactness criteria.

For α = 1 and zn = wn, Algorithm 3.6 is exactly Algorithm 3.4. If y = w, then Algo-
rithm 3.6 reduces to:

Algorithm 3.7. For a given u ∈ H , compute the approximate solution un+1 by the iterative
schemes

g(yn) = PK

[
g(un) − ρnT un+1

]
,

g(wn) = PK

[
g(un) − ρnTyn

]
,

g(un+1) := g(zn) = PK

[
g(un) − α

(
g(un) − g(wn)

)]
, n = 0,1,2, . . . ,

α = ‖g(un) − g(yn)‖2 + ‖g(un) − g(wn)‖2 − Δ(yn)

2
,

2‖g(un) − g(wn)‖
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which is an approximate proximal-extragradient projection method for solving (1). In par-
ticular, for g = I , the identity operator, Algorithm 3.7 appears to be a new one. In a similar
way, one can obtain various new and known algorithms as special cases of Algorithm 3.6.
This shows that Algorithm 3.6 unifies several recently proposed (implicit or explicit) algo-
rithms for solving variational inequalities.

We now study the convergence analysis of Algorithm 3.6. The analysis is in the spirit of
He, Yang and Yuan [9]. To convey the idea and for the sake of completeness, we include
the details.

Theorem 3.1. Let the operator T be g-pseudomonotone. If u ∈ H : g(u) ∈ K be a solution
of the general variational inequality (1) and un+1 be the approximate solution obtained
from Algorithm 3.6, then

∥∥g
(
un+1(α)

) − g(u)
∥∥2

�
∥∥g(un) − g(u)

∥∥2 (1 − ν)2

4

{∥∥g(zn) − g(wn)
∥∥2 + ∥∥g(un) − g(zn)

∥∥2}
. (19)

Proof. Let u ∈ H : g(u) ∈ K be a solution of (1). Then
〈
T u,g(v) − g(u)

〉
� 0, ∀v ∈ H : g(v) ∈ K,

implies that
〈
T v,g(v) − g(u)

〉
� 0, (20)

since T is g-monotone.
Taking v = wn in (20), we have

〈
T wn,g(wn) − g(u)

〉
� 0,

which can be written as
〈
T wn,g(zn) − g(u)

〉
�

〈
T wn,g(zn) − g(wn)

〉
. (21)

Taking z = g(un) − ρnT wn, u = g(zn) and v = g(u) in (4), we have
〈
g(un) − ρnT wn − g(zn), g(zn) − g(u)

〉
� 0,

from which we have
〈
g(un) − g(zn), g(zn) − g(u)

〉
�

〈
g(zn) − g(u),ρnT wn

〉
. (22)

From (21) and (22), we have
〈
g(un) − g(zn), g(zn) − g(u)

〉
�

〈
ρnT wn,g(zn) − g(wn)

〉
. (23)

Consider
∥∥g(un) − g(u)

∥∥2 − ∥∥g
(
un+1(α)

) − g(u)
∥∥2

= ∥∥g(un) − g(u)
∥∥2 − ∥∥PK

[
g(un) − α

(
g(un) − g(zn)

)] − PK

[
g(u)

]∥∥2

�
∥∥g(un) − g(u)

∥∥2 − ∥∥g(un) − g(u) − α
(
g(un) − g(zn)

)∥∥2
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= 2α
〈
g(un) − g(u), g(un) − g(zn)

〉 − α2
∥∥g(un) − g(zn)

∥∥2

= 2α
∥∥g(un) − g(zn)

∥∥2 + 2α
〈
g(zn) − g(u), g(un) − g(zn)

〉

− α2
∥∥g(un) − g(zn)

∥∥2
. (24)

Combining (16)–(18), (23) and (24), we obtain
∥∥g(un) − g(u)

∥∥2 − ∥∥g
(
un+1(α)

) − g(u)
∥∥2

� α
{∥∥g(zn) − g(wn)

∥∥2 + ∥∥g(un) − g(zn)
∥∥2 − Δ(wn)

}

− α2
∥∥g(un) − g(zn)

∥∥2
, (25)

which is a quadratic in α and has a maximum at

α∗ = ‖g(zn) − g(wn)‖2 + ‖g(un) − g(zn)‖2 − Δ(wn)

2‖g(un) − g(zn)‖2
. (26)

From (17), (18), (25) and (26), we have the required result (19). �
Theorem 3.2. Let H be a finite dimensional subspace and g be an injective and continuous.
Let u ∈ H : g(u) ∈ K be a solution of (1) and un+1 be the approximate solution obtained
from Algorithm 3.6, then limn−→∞(un) = u.

Proof. Let u ∈ H be a solution of (1). From (19), it follows that the sequence {‖g(u) −
g(un)‖} is nonincreasing and consequently {g(un)} is bounded. Thus it follows the se-
quence {un} is bounded under the assumption of g. Furthermore, we have

∞∑

n=1

(1 − ν)2

4

{∥∥g(zn) − g(wn)
∥∥2 + ∥∥g(un) − g(zn)

∥∥2} �
∥∥g(u0) − g(u)

∥∥2
,

which implies that

lim
n→∞

∥∥g(zn) − g(wn)
∥∥ = 0, (27)

lim
n→∞

∥∥g(un) − g(zn)
∥∥ = 0, (28)

from which, we have

lim
n→∞‖zn − wn‖ = 0, (29)

lim
n→∞‖un − zn‖ = 0, (30)

since g is injective.
Thus we see that the sequences {wn} and {zn} are also bounded. Also from (27) and

(28), we have
∥∥R(wn)

∥∥ = ∥∥g(wn) − PK

[
g(wn) − ρT wn

]∥∥

= ∥∥g(wn) − g(zn) + g(zn) − PK

[
g(wn) − ρT wn

]∥∥

�
∥∥g(wn) − g(zn)

∥∥ + ∥∥PK

[
g(un) − ρT wn

] − PK

[
g(wn) − ρT wn

]∥∥
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�
∥∥g(wn) − g(zn)

∥∥ + ∥∥g(un) − g(wn)
∥∥

= 0.

Thus

lim
n→∞R(wn) = 0. (31)

Let û be a cluster point of {wn} and the subsequence {wni
} converges to û. Since R(u)

is a continuous function of u, it follows that

lim
n→∞R(wni

) = R(û) = 0,

which shows that û is a solution of the general variational inequality (1). From (29) and
(30), we know that limn→∞(wni

) = û = limn→∞(zni
). Hence from (19), we have

‖un+1 − û‖2 � ‖un − û‖2, ∀n � 0,

which shows that the sequence {un} converges to û, the required result. �
Remark 3.1. We now show that the results derived in the paper can be extended for a
class of quasi-variational inequalities. If the convex set K depends upon the solution ex-
plicitly or implicitly, then variational inequality problem is known as the quasi-variational
inequality. For a given operator T :H → H , and a point-to-set mapping K :u → K(u),
which associates a closed convex-valued set K(u) with any element u of H , we consider
the problem of finding u ∈ K(u) such that

〈T u,v − u〉 � 0, for all v ∈ K(u). (32)

Inequality of type (32) is called the quasi-variational inequality. For the formulation, ap-
plications, numerical methods and sensitivity analysis of the quasi-variational inequalities;
see [11,14,17,18].

Using Lemma 2.1, one can show that the quasi-variational inequality (32) is equivalent
to finding u ∈ K(u) such that

u = PK(u)[u − ρT u]. (33)

In many important applications, the convex-valued set K(u) is of the form

K(u) = m(u) + K, (34)

where m is a point-to-point mapping and K is a closed convex set.
From (33) and (34), we see that problem (32) is equivalent to

u = PK(u)[u − ρT u] = Pm(u)+K [u − ρT u] = m(u) + PK

[
u − m(u) − ρT u

]
,

which implies that

g(u) = PK

[
g(u) − ρT u

]
with g(u) = u − m(u),

which is equivalent to the general variational inequality (1) by an application of
Lemma 3.1. We have shown that the quasi-variational inequalities (32) with the convex-
valued set K(u) defined by (34) are equivalent to the general variational inequalities (1).
Thus all the results obtained in this paper continue to hold for quasi-variational inequalities
(32) with K(u) defined by (34).
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Remark 3.2. In this paper, we have suggested and analyzed several projection-proximal
methods for solving the general variational inequalities. These methods are more general
and flexible even for the classical variational inequalities (2). We remark that a special
of Algorithm 3.6 coincides with the approximate proximal-extragradient algorithm of He,
Yang and Yuan [9]. It has been shown in [9] that these proximal-extragradient methods
are very efficient and are reasonably easy to use for computations as compared with the
method of Solodov and Svaitor [10] for solving the network equilibrium problems. The
comparison of these new methods with other methods is an interesting problem for further
research in this area.
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