399 research outputs found

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Generalised latent variable models for location, scale, and shape parameters

    Get PDF
    Latent Variable Models (LVM) are widely used in social, behavioural, and educational sciences to uncover underlying associations in multivariate data using a smaller number of latent variables. However, the classical LVM framework has certain assumptions that can be restrictive in empirical applications. In particular, the distribution of the observed variables being from the exponential family and the latent variables influencing only the conditional mean of the observed variables. This thesis addresses these limitations and contributes to the current literature in two ways. First, we propose a novel class of models called Generalised Latent Variable Models for Location, Scale, and Shape parameters (GLVM-LSS). These models use linear functions of latent factors to model location, scale, and shape parameters of the items’ conditional distributions. By doing so, we model higher order moments such as variance, skewness, and kurtosis in terms of the latent variables, providing a more flexible framework compared to classical factor models. The model parameters are estimated using maximum likelihood estimation. Second, we address the challenge of interpreting the GLVM-LSS, which can be complex due to its increased number of parameters. We propose a penalised maximum likelihood estimation approach with automatic selection of tuning parameters. This extends previous work on penalised estimation in the LVM literature to cases without closed-form solutions. Our findings suggest that modelling the entire distribution of items, not just the conditional mean, leads to improved model fit and deeper insights into how the items reflect the latent constructs they are intended to measure. To assess the performance of the proposed methods, we conduct extensive simulation studies and apply it to real-world data from educational testing and public opinion research. The results highlight the efficacy of the GLVM-LSS framework in capturing complex relationships between observed variables and latent factors, providing valuable insights for researchers in various fields

    Measuring the impact of COVID-19 on hospital care pathways

    Get PDF
    Care pathways in hospitals around the world reported significant disruption during the recent COVID-19 pandemic but measuring the actual impact is more problematic. Process mining can be useful for hospital management to measure the conformance of real-life care to what might be considered normal operations. In this study, we aim to demonstrate that process mining can be used to investigate process changes associated with complex disruptive events. We studied perturbations to accident and emergency (A &E) and maternity pathways in a UK public hospital during the COVID-19 pandemic. Co-incidentally the hospital had implemented a Command Centre approach for patient-flow management affording an opportunity to study both the planned improvement and the disruption due to the pandemic. Our study proposes and demonstrates a method for measuring and investigating the impact of such planned and unplanned disruptions affecting hospital care pathways. We found that during the pandemic, both A &E and maternity pathways had measurable reductions in the mean length of stay and a measurable drop in the percentage of pathways conforming to normative models. There were no distinctive patterns of monthly mean values of length of stay nor conformance throughout the phases of the installation of the hospital’s new Command Centre approach. Due to a deficit in the available A &E data, the findings for A &E pathways could not be interpreted

    Robust learning to rank models and their biomedical applications

    Get PDF
    There exist many real-world applications such as recommendation systems, document retrieval, and computational biology where the correct ordering of instances is of equal or greater importance than predicting the exact value of some discrete or continuous outcome. Learning-to-Rank (LTR) refers to a group of algorithms that apply machine learning techniques to tackle these ranking problems. Despite their empirical success, most existing LTR models are not built to be robust to errors in labeling or annotation, distributional data shift, or adversarial data perturbations. To fill this gap, we develop four LTR frameworks that are robust to various types of perturbations. First, Pairwise Elastic Net Regression Ranking (PENRR) is an elastic-net-based regression method for drug sensitivity prediction. PENRR infers robust predictors of drug responses from patient genomic information. The special design of this model (comparing each drug with other drugs in the same cell line and comparing that drug with itself in other cell lines) significantly enhances the accuracy of the drug prediction model under limited data. This approach is also able to solve the problem of fitting on the insensitive drugs that is commonly encountered in regression-based models. Second, Regression-based Ranking by Pairwise Cluster Comparisons (RRPCC) is a ridge-regression-based method for ranking clusters of similar protein complex conformations generated by an underlying docking program (i.e., ClusPro). Rather than using regression to predict scores, which would equally penalize deviations for either low-quality and high-quality clusters, we seek to predict the difference of scores for any pair of clusters corresponding to the same complex. RRPCC combines these pairwise assessments to form a ranked list of clusters, from higher to lower quality. We apply RRPCC to clusters produced by the automated docking server ClusPro and, depending on the training/validation strategy, we show. improvement by 24%–100% in ranking acceptable or better quality clusters first, and by 15%–100% in ranking medium or better quality clusters first. Third, Distributionally Robust Multi-Output Regression Ranking (DRMRR) is a listwise LTR model that induces robustness into LTR problems using the Distributionally Robust Optimization framework. Contrasting to existing methods, the scoring function of DRMRR was designed as a multivariate mapping from a feature vector to a vector of deviation scores, which captures local context information and cross-document interactions. DRMRR employs ranking metrics (i.e., NDCG) in its output. Particularly, we used the notion of position deviation to define a vector of relevance score instead of a scalar one. We then adopted the DRO framework to minimize a worst-case expected multi-output loss function over a probabilistic ambiguity set that is defined by the Wasserstein metric. We also presented an equivalent convex reformulation of the DRO problem, which is shown to be tighter than the ones proposed by the previous studies. Fourth, Inversion Transformer-based Neural Ranking (ITNR) is a Transformer-based model to predict drug responses using RNAseq gene expression profiles, drug descriptors, and drug fingerprints. It utilizes a Context-Aware-Transformer architecture as its scoring function that ensures the modeling of inter-item dependencies. We also introduced a new loss function using the concept of Inversion and approximate permutation matrices. The accuracy and robustness of these LTR models are verified through three medical applications, namely cluster ranking in protein-protein docking, medical document retrieval, and drug response prediction

    Study of L0-norm constraint normalized subband adaptive filtering algorithm

    Full text link
    Limited by fixed step-size and sparsity penalty factor, the conventional sparsity-aware normalized subband adaptive filtering (NSAF) type algorithms suffer from trade-off requirements of high filtering accurateness and quicker convergence behavior. To deal with this problem, this paper proposes variable step-size L0-norm constraint NSAF algorithms (VSS-L0-NSAFs) for sparse system identification. We first analyze mean-square-deviation (MSD) statistics behavior of the L0-NSAF algorithm innovatively in according to a novel recursion form and arrive at corresponding expressions for the cases that background noise variance is available and unavailable, where correlation degree of system input is indicated by scaling parameter r. Based on derivations, we develop an effective variable step-size scheme through minimizing the upper bounds of the MSD under some reasonable assumptions and lemma. To realize performance improvement, an effective reset strategy is incorporated into presented algorithms to tackle with non-stationary situations. Finally, numerical simulations corroborate that the proposed algorithms achieve better performance in terms of estimation accurateness and tracking capability in comparison with existing related algorithms in sparse system identification and adaptive echo cancellation circumstances.Comment: 15 pages,15 figure

    Inner product preconditioned optimization methods for full waveform inversion

    Full text link
    • …
    corecore