689 research outputs found

    Strong converse theorems using R\'enyi entropies

    Full text link
    We use a R\'enyi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum or classical communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [arXiv:1404.5940], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e,q)(e,q)-plane, where ee and qq denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a R\'enyi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched R\'enyi divergence. In particular, we obtain novel bounds relating these quantities, as well as the R\'enyi conditional mutual information, to the fidelity of two quantum states.Comment: 40 pages, 5 figures; v4: Accepted for publication in Journal of Mathematical Physic

    Properties of Noncommutative Renyi and Augustin Information

    Full text link
    The scaled R\'enyi information plays a significant role in evaluating the performance of information processing tasks by virtue of its connection to the error exponent analysis. In quantum information theory, there are three generalizations of the classical R\'enyi divergence---the Petz's, sandwiched, and log-Euclidean versions, that possess meaningful operational interpretation. However, these scaled noncommutative R\'enyi informations are much less explored compared with their classical counterpart, and lacking crucial properties hinders applications of these quantities to refined performance analysis. The goal of this paper is thus to analyze fundamental properties of scaled R\'enyi information from a noncommutative measure-theoretic perspective. Firstly, we prove the uniform equicontinuity for all three quantum versions of R\'enyi information, hence it yields the joint continuity of these quantities in the orders and priors. Secondly, we establish the concavity in the region of s∈(−1,0)s\in(-1,0) for both Petz's and the sandwiched versions. This completes the open questions raised by Holevo [\href{https://ieeexplore.ieee.org/document/868501/}{\textit{IEEE Trans.~Inf.~Theory}, \textbf{46}(6):2256--2261, 2000}], Mosonyi and Ogawa [\href{https://doi.org/10.1007/s00220-017-2928-4/}{\textit{Commun.~Math.~Phys}, \textbf{355}(1):373--426, 2017}]. For the applications, we show that the strong converse exponent in classical-quantum channel coding satisfies a minimax identity. The established concavity is further employed to prove an entropic duality between classical data compression with quantum side information and classical-quantum channel coding, and a Fenchel duality in joint source-channel coding with quantum side information in the forthcoming papers

    Lower Bounds on Error Exponents via a New Quantum Decoder

    Full text link
    We introduce a new quantum decoder based on a variant of the pretty good measurement, but defined via an alternative matrix quotient. We use this decoder to show new lower bounds on the error exponent both in the one-shot and asymptotic regimes for the classical-quantum and the entanglement-assisted channel coding problem. Our bounds are expressed in terms of measured (for the one-shot bounds) and sandwiched (for the asymptotic bounds) channel R\'enyi mutual information of order between 1/2 and 1. Our results are not comparable with some previously established bounds for general instances, yet they are tight (for rates close to capacity) when the underlying channel is classical.Comment: v2: further properties of the new measurement are discusse

    Distributed Channel Synthesis

    Full text link
    Two familiar notions of correlation are rediscovered as the extreme operating points for distributed synthesis of a discrete memoryless channel, in which a stochastic channel output is generated based on a compressed description of the channel input. Wyner's common information is the minimum description rate needed. However, when common randomness independent of the input is available, the necessary description rate reduces to Shannon's mutual information. This work characterizes the optimal trade-off between the amount of common randomness used and the required rate of description. We also include a number of related derivations, including the effect of limited local randomness, rate requirements for secrecy, applications to game theory, and new insights into common information duality. Our proof makes use of a soft covering lemma, known in the literature for its role in quantifying the resolvability of a channel. The direct proof (achievability) constructs a feasible joint distribution over all parts of the system using a soft covering, from which the behavior of the encoder and decoder is inferred, with no explicit reference to joint typicality or binning. Of auxiliary interest, this work also generalizes and strengthens this soft covering tool.Comment: To appear in IEEE Trans. on Information Theory (submitted Aug., 2012, accepted July, 2013), 26 pages, using IEEEtran.cl

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Operational interpretation of Rényi information measures via composite hypothesis testing against product and markov distributions

    Full text link
    © 1963-2012 IEEE. We revisit the problem of asymmetric binary hypothesis testing against a composite alternative hypothesis. We introduce a general framework to treat such problems when the alternative hypothesis adheres to certain axioms. In this case, we find the threshold rate, the optimal error and strong converse exponents (at large deviations from the threshold), and the second order asymptotics (at small deviations from the threshold). We apply our results to find the operational interpretations of various Rényi information measures. In case the alternative hypothesis is comprised of bipartite product distributions, we find that the optimal error and strong converse exponents are determined by the variations of Rényi mutual information. In case the alternative hypothesis consists of tripartite distributions satisfying the Markov property, we find that the optimal exponents are determined by the variations of Rényi conditional mutual information. In either case, the relevant notion of Rényi mutual information depends on the precise choice of the alternative hypothesis. As such, this paper also strengthens the view that different definitions of Rényi mutual information, conditional entropy, and conditional mutual information are adequate depending on the context in which the measures are used

    Applications of position-based coding to classical communication over quantum channels

    Get PDF
    Recently, a coding technique called position-based coding has been used to establish achievability statements for various kinds of classical communication protocols that use quantum channels. In the present paper, we apply this technique in the entanglement-assisted setting in order to establish lower bounds for error exponents, lower bounds on the second-order coding rate, and one-shot lower bounds. We also demonstrate that position-based coding can be a powerful tool for analyzing other communication settings. In particular, we reduce the quantum simultaneous decoding conjecture for entanglement-assisted or unassisted communication over a quantum multiple access channel to open questions in multiple quantum hypothesis testing. We then determine achievable rate regions for entanglement-assisted or unassisted classical communication over a quantum multiple-access channel, when using a particular quantum simultaneous decoder. The achievable rate regions given in this latter case are generally suboptimal, involving differences of Renyi-2 entropies and conditional quantum entropies.Comment: v4: 44 pages, v4 includes a simpler proof for an upper bound on one-shot entanglement-assisted capacity, also found recently and independently in arXiv:1804.0964
    • …
    corecore