7,680 research outputs found

    Application of Generalized Partial Volume Estimation for Mutual Information based Registration of High Resolution SAR and Optical Imagery

    Get PDF
    Mutual information (MI) has proven its effectiveness for automated multimodal image registration for numerous remote sensing applications like image fusion. We analyze MI performance with respect to joint histogram bin size and the employed joint histogramming technique. The affect of generalized partial volume estimation (GPVE) utilizing B-spline kernels with different histogram bin sizes on MI performance has been thoroughly explored for registration of high resolution SAR (TerraSAR-X) and optical (IKONOS-2) satellite images. Our experiments highlight possibility of an inconsistent MI behavior with different joint histogram bin size which gets reduced with an increase in order of B-spline kernel employed in GPVE. In general, bin size reduction and/or increasing B-spline order have a smoothing affect on MI surfaces and even the lowest order B-spline with a suitable histogram bin size can achieve same pixel level accuracy as achieved by the higher order kernels more consistently

    Entropy Encoding, Hilbert Space and Karhunen-Loeve Transforms

    Full text link
    By introducing Hilbert space and operators, we show how probabilities, approximations and entropy encoding from signal and image processing allow precise formulas and quantitative estimates. Our main results yield orthogonal bases which optimize distinct measures of data encoding.Comment: 25 pages, 1 figur

    Using Lidar to geometrically-constrain signature spaces for physics-based target detection

    Get PDF
    A fundamental task when performing target detection on spectral imagery is ensuring that a target signature is in the same metric domain as the measured spectral data set. Remotely sensed data are typically collected in digital counts and calibrated to radiance. That is, calibrated data have units of spectral radiance, while target signatures in the visible regime are commonly characterized in units of re°ectance. A necessary precursor to running a target detection algorithm is converting the measured scene data and target signature to the same domain. Atmospheric inversion or compensation is a well-known method for transforming mea- sured scene radiance values into the re°ectance domain. While this method may be math- ematically trivial, it is computationally attractive and is most eŸective when illumination conditions are constant across a scene. However, when illumination conditions are not con- stant for a given scene, signi¯cant error may be introduced when applying the same linear inversion globally. In contrast to the inversion methodology, physics-based forward modeling approaches aim to predict the possible ways that a target might appear in a scene using atmospheric and radiometric models. To fully encompass possible target variability due to changing illumination levels, a target vector space is created. In addition to accounting for varying illumination, physics-based model approaches have a distinct advantage in that they can also incorporate target variability due to a variety of other sources, to include adjacency target orientation, and mixed pixels. Increasing the variability of the target vector space may be beneficial in a global sense in that it may allow for the detection of difficult targets, such as shadowed or partially concealed targets. However, it should also be noted that expansion of the target space may introduce unnecessary confusion for a given pixel. Furthermore, traditional physics-based approaches make certain assumptions which may be prudent only when passive, spectral data for a scene are available. Common examples include the assumption of a °at ground plane and pure target pixels. Many of these assumptions may be attributed to the lack of three-dimensional (3D) spatial information for the scene. In the event that 3D spatial information were available, certain assumptions could be levied, allowing accurate geometric information to be fed to the physics-based model on a pixel- by-pixel basis. Doing so may eŸectively constrain the physics-based model, resulting in a pixel-specific target space with optimized variability and minimized confusion. This body of work explores using spatial information from a topographic Light Detection and Ranging (Lidar) system as a means to enhance the delity of physics-based models for spectral target detection. The incorporation of subpixel spatial information, relative to a hyperspectral image (HSI) pixel, provides valuable insight about plausible geometric con¯gurations of a target, background, and illumination sources within a scene. Methods for estimating local geometry on a per-pixel basis are introduced; this spatial information is then fed into a physics-based model to the forward prediction of a target in radiance space. The target detection performance based on this spatially-enhanced, spectral target space is assessed relative to current state-of-the-art spectral algorithms

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Deep Learning based data-fusion methods for remote sensing applications

    Get PDF
    In the last years, an increasing number of remote sensing sensors have been launched to orbit around the Earth, with a continuously growing production of massive data, that are useful for a large number of monitoring applications, especially for the monitoring task. Despite modern optical sensors provide rich spectral information about Earth's surface, at very high resolution, they are weather-sensitive. On the other hand, SAR images are always available also in presence of clouds and are almost weather-insensitive, as well as daynight available, but they do not provide a rich spectral information and are severely affected by speckle "noise" that make difficult the information extraction. For the above reasons it is worth and challenging to fuse data provided by different sources and/or acquired at different times, in order to leverage on their diversity and complementarity to retrieve the target information. Motivated by the success of the employment of Deep Learning methods in many image processing tasks, in this thesis it has been faced different typical remote sensing data-fusion problems by means of suitably designed Convolutional Neural Networks

    Traffic Scene Perception for Automated Driving with Top-View Grid Maps

    Get PDF
    Ein automatisiertes Fahrzeug muss sichere, sinnvolle und schnelle Entscheidungen auf Basis seiner Umgebung treffen. Dies benötigt ein genaues und recheneffizientes Modell der Verkehrsumgebung. Mit diesem Umfeldmodell sollen Messungen verschiedener Sensoren fusioniert, gefiltert und nachfolgenden Teilsysteme als kompakte, aber aussagekrĂ€ftige Information bereitgestellt werden. Diese Arbeit befasst sich mit der Modellierung der Verkehrsszene auf Basis von Top-View Grid Maps. Im Vergleich zu anderen Umfeldmodellen ermöglichen sie eine frĂŒhe Fusion von Distanzmessungen aus verschiedenen Quellen mit geringem Rechenaufwand sowie eine explizite Modellierung von Freiraum. Nach der Vorstellung eines Verfahrens zur BodenoberflĂ€chenschĂ€tzung, das die Grundlage der Top-View Modellierung darstellt, werden Methoden zur Belegungs- und Elevationskartierung fĂŒr Grid Maps auf Basis von mehreren, verrauschten, teilweise widersprĂŒchlichen oder fehlenden Distanzmessungen behandelt. Auf der resultierenden, sensorunabhĂ€ngigen ReprĂ€sentation werden anschließend Modelle zur Detektion von Verkehrsteilnehmern sowie zur SchĂ€tzung von Szenenfluss, Odometrie und Tracking-Merkmalen untersucht. Untersuchungen auf öffentlich verfĂŒgbaren DatensĂ€tzen und einem Realfahrzeug zeigen, dass Top-View Grid Maps durch on-board LiDAR Sensorik geschĂ€tzt und verlĂ€sslich sicherheitskritische Umgebungsinformationen wie Beobachtbarkeit und Befahrbarkeit abgeleitet werden können. Schließlich werden Verkehrsteilnehmer als orientierte Bounding Boxen mit semantischen Klassen, Geschwindigkeiten und Tracking-Merkmalen aus einem gemeinsamen Modell zur Objektdetektion und FlussschĂ€tzung auf Basis der Top-View Grid Maps bestimmt

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations
    • 

    corecore