8 research outputs found

    Nova automatska metoda za poboljšanje točnosti fotogrametrijskog DTM-a u šumama

    Get PDF
    Accuracy of a Digital Terrain Model (DTM) in a complex forest environment is critical and yet challenging for accurate forest inventory and management, disaster risk analysis, and timber utilization. Reducing elevation errors in photogrammetric DTM (DTMPHM), which present the national standard in many countries worldwide, is critical, especially for forested areas. In this paper, a novel automated method to detect the errors and to improve the accuracy of DTMPHM for the lowland forest has been presented and evaluated. This study was conducted in the lowland pedunculate oak forest (Pokupsko Basin, Croatia). The DTMPHM was created from three-dimensional (3D) vector data collected by aerial stereo-photogrammetry in combination with data collected from existing maps and field surveys. These data still present the national standard for DTM generation in many countries, including Croatia. By combining slope and tangential curvature values of raster DTMPHM, the proposed method developed in open source Grass GIS software automatically detected 91 outliers or 3.2% of the total number of source points within the study area. Comparison with a highly accurate LiDAR DTM confirmed the method efficiency. This was especially evident in two out of three observed subset areas where the root mean square error (RMSE) values decreased for 8% in one and 50% in another area after errors elimination. The method could be of great importance to other similar studies for forested areas in countries where the LiDAR data are not available.Digitalni model reljefa (DTM, engl. Digital Terrain Model) ima široku i važnu primjenu u mnogim djelatnostima, uključujući i šumarstvo. Međutim, precizno modeliranje terena, odnosno izrada DTM-a u šumama, bilo korištenjem terenskih metoda ili metoda daljinskih istraživanja, izazovan je i vrlo zahtjevan zadatak. U većini razvijenih zemalja svijeta, zračno lasersko skeniranje (ALS, engl. Airborne Laser Scanning) bazirano na LiDAR (engl. Light Detection and Ranging) tehnologiji trenutno predstavlja glavnu metodu za izradu DTM-a. Uslijed mogućnosti laserskog zračenja da penetrira kroz krošnje drveća, LiDAR tehnologija se pokazala kao efektivna i brza metoda za izradu DTM-a u šumskim područjima s vrlo velikom točnošću. Međutim, u mnogim zemljama svijeta, uključujući i Hrvatsku, zračno lasersko skeniranje nije u potpunosti provedeno, tj. samo su manji dijelovi zemlje pokriveni s podacima zračnog laserskog skeniranja. U tim slučajevima, DTM temeljen na stereo-fotogrametrijskoj izmjeri aerosnimaka potpomognut s terenskim podacima najčešće predstavlja glavni izvor informacija za izradu DTM-a. Poznato je da tako izrađen DTM u šumskim predjelima ima manju točnost od DTM-a dobivenog na temelju zračnog laserskog skeniranja zbog pokrivenosti terena vegetacijom. Također, u okviru nedavno provedenog istraživanja (Balenović i dr., 2018) utvrđeno je da takvi službeni fotogrametrijski digitalni podaci terena u šumskim predjelima sadrže određen broj tzv. grubih grešaka, koje mogu značajno utjecati na točnost izrađenog DTM-a. Nakon vizualnog detektiranja i manualnog uklanjanja tih pogrešaka, Balenović i dr. (2018) utvrdili su značajno poboljšanje točnosti fotogrametrijskog DTM-a.Stoga je glavni cilj ovoga rada razviti automatsku metodu za detekciju i eliminaciju vertikalnih pogrešaka u fotogrametrijskim digitalnim podacima terena te na taj način poboljšati točnost fotogrametrijskog DTM-a u nizinskim šumskim područjima Hrvatske. Ideja je razviti brzu, jednostavnu i učinkovitu metodu koja će biti primjenjiva i za druga šumska područja sličnih karakteristika, a za koja ne postoje DTM dobiven zračnim laserskim skeniranjem. Istraživanje je provedeno u nizinskim šumama na području gospodarske jedinice Jastrebarski lugovi, u neposrednoj blizini Jastrebarskog (Slika 1). Istraživanjem je obuhvaćena površina od 2.005,74 ha, na kojoj su u najvećoj mjeri zastupljene jednodobne sastojine hrasta lužnjaka (Quercus robur L.), a u ma­njoj mjeri jednodobne sastojine poljskog jasena (Fraxinus angustifolia L.) te jednodobne sastojine običnoga graba (Carpinus betulus L.). Nadmorska visina područja istraživanja kreće se u rasponu od 105 do 121 m.Fotogrametrijski DTM (DTMPHM) je izrađen iz digitalnih vektorskih podataka terena (prijelomnice, linije oblika, markantne točke terena i pravokutne mreže visinskih točaka) nabavljenih iz Državne geodetske uprave (Slika 2). Ti podaci predstavljaju nacionalni standard i jedini su dostupni podaci za izradu DTM-a u Hrvatskoj. Detaljan opis vektorskih podataka dan je u radu Balenović i dr. (2018). Prvo je iz digitalnih terenskih podataka izrađena nepravilna mreža trokuta, koja je potom linearnom interpolacijom pretvorena u rasterski DTMPHM prostorne rezolucije (veličine piksela) 0,5 m. Automatska metoda za detekciju i eliminaciju vertikalnih pogrešaka fotogrametrijskog DTM-a u nizinskim šumskim područjima razvijena je u slobodnom programskom paketu Grass GIS (Slika 3). Kombinacijom vrijednosti nagiba i tangencijalne zakrivljenosti terena rasterskog DTMPHM (Slika 4), automatskom metodom su detektirane 91 grube greške (engl. outliers). Drugim riječima, utvrđeno je da 91 točkasti vektorski objekt pogrešno prikazuje stvarnu visinu terena. Navedeni broj čini 3,2 % od ukupnog broja točkastih objekata korištenih za izradu DTMPHM-a. Nakon eliminacije detektiranih pogrešaka izrađen je novi, korigirani fotogrametrijski DTM (DTMPHMc). Za ocjenu vertikalne točnosti izvornog (DTMPHM) i korigiranog DTM-a (DTMPHMc) korišten je visoko precizni DTM dobiven zračnim laserskim skeniranjem (DTMLiD). U tu svrhu su izrađeni rasteri razlika između DTMPHM i DTMLiD, te između DTMPHMc i DTMLiD. Kako je preliminarnom analizom utvrđeno da vertikalne razlike između DTMPHM i DTMLiD nisu normalno distribuirane (Slika 5), za ocjenu točnosti su uz normalne mjere točnosti korištene i tzv. robusne mjere točnosti (Tablica 2). Dobiveni rezultati ukazuju na poboljšanje vertikalne točnosti fotogrametrijskog DTM-a primjenom razvijene automatske metode. To je posebice uočljivo na podpodručjima 2 i 3 (Slika 6 i 7) u kojima se nakon uklanjanja detektiranih grešaka, korijen srednje kvadratne pogreške (RMSE, engl. root mean square error) smanjio za 8 % odnosno 50 % (Tablica 2). Na temelju dobivenih rezultata i usporedbe s DTMLiD, može se zaključiti da predložena metoda uspješno detektira i eliminira vertikalne pogreške fotogrametrijskog DTM-a u nizinskim šumskim područjima, te slijedom toga poboljšava njegovu vertikalnu točnost

    Global 3D Terrain Maps for Agricultural Applications

    Get PDF

    MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Get PDF

    IMPLEMENTING SIFT AND BI-TRIANGULAR PLANE TRANSFORMATION FOR INTEGRATING DIGITAL TERRAIN MODELS

    Get PDF
    Since their inception in the middle of the twentieth century, Digital Terrain Models (DTMs) have played an important role in many fields and applications that are used by geospatial professionals, ranging from commercial companies to government agencies. Thus, both the scientific community and the industry have introduced many methods and technologies for DTM generation and data handling. These resulted in a high volume and variety of DTM databases, each having different coverage and data-characteristics, such as accuracy, resolution, level-of-detail – amongst others. These various factors can cause a dilemma for scientists, mappers, and engineers that now have to choose a DTM to work with, let alone if several of these representations exist for a specified area. Traditionally, researchers tackled this problem by using only one DTM (e.g., the most accurate or detailed one), and only rarely tried to implement data fusion approaches, combining several DTMs into one cohesive unit. Although to some extent this was successful in reducing errors and improving the overall integrated DTM accuracy, two prominent problems are still scarcely addressed. The first is that the horizontal datum distortions and discrepancies between the DTMs are mostly ignored, with only the height dimension taken into account, even though in most cases these are evident. The second is that most approaches operate on a global scale, and thus do not address the more localized variations and discrepancies that are presented in the different DTMs. Both problems affect the resulting integrated DTM quality, which retains these unresolved distortions and discrepancies, resulting in a representation that is to some extent inferior and ambiguous. In order to tackle this, we propose an image based fusion approach: using the SIFT algorithm for matching and registration of the different representations, alongside localized morphing. Implementing the proposed approach and algorithms on various DTMs, the results are promising, with the capacity correctly geospatially align the DTMs, thus reducing the mean height difference variance between the databases to close to zero, as well as reducing the standard deviation between them by more than 30 %

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Merging digital surface models sourced from multi-satellite imagery and their consequent application in automating 3D building modelling

    Get PDF
    Recently, especially within the last two decades, the demand for DSMs (Digital Surface Models) and 3D city models has increased dramatically. This has arisen due to the emergence of new applications beyond construction or analysis and consequently to a focus on accuracy and the cost. This thesis addresses two linked subjects: first improving the quality of the DSM by merging different source DSMs using a Bayesian approach; and second, extracting building footprints using approaches, including Bayesian approaches, and producing 3D models. Regarding the first topic, a probabilistic model has been generated based on the Bayesian approach in order to merge different source DSMs from different sensors. The Bayesian approach is specified to be ideal in the case when the data is limited and this can consequently be compensated by introducing the a priori. The implemented prior is based on the hypothesis that the building roof outlines are specified to be smooth, for that reason local entropy has been implemented in order to infer the a priori data. In addition to the a priori estimation, the quality of the DSMs is obtained by using field checkpoints from differential GNSS. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the Maximum Likelihood model which showed similar quantitative statistical results and better qualitative results. Perhaps it is worth mentioning that, although the DSMs used in the merging have been produced using satellite images, the model can be applied on any type of DSM. The second topic is building footprint extraction based on using satellite imagery. An efficient flow-line for automatic building footprint extraction and 3D model construction, from both stereo panchromatic and multispectral satellite imagery was developed. This flow-line has been applied in an area of different building types, with both hipped and sloped roofs. The flow line consisted of multi stages. First, data preparation, digital orthoimagery and DSMs are created from WorldView-1. Pleiades imagery is used to create a vegetation mask. The orthoimagery then undergoes binary classification into ‘foreground’ (including buildings, shadows, open-water, roads and trees) and ‘background’ (including grass, bare soil, and clay). From the foreground class, shadows and open water are removed after creating a shadow mask by thresholding the same orthoimagery. Likewise roads have been removed, for the time being, after interactively creating a mask using the orthoimagery. NDVI processing of the Pleiades imagery has been used to create a mask for removing the trees. An ‘edge map’ is produced using Canny edge detection to define the exact building boundary outlines, from enhanced orthoimagery. A normalised digital surface model (nDSM) is produced from the original DSM using smoothing and subtracting techniques. Second, start Building Detection and Extraction. Buildings can be detected, in part, in the nDSM as isolated relatively elevated ‘blobs’. These nDSM ‘blobs’ are uniquely labelled to identify rudimentary buildings. Each ‘blob’ is paired with its corresponding ‘foreground’ area from the orthoimagery. Each ‘foreground’ area is used as an initial building boundary, which is then vectorised and simplified. Some unnecessary details in the ‘edge map’, particularly on the roofs of the buildings can be removed using mathematical morphology. Some building edges are not detected in the ‘edge map’ due to low contrast in some parts of the orthoimagery. The ‘edge map’ is subsequently further improved also using mathematical morphology, leading to the ‘modified edge map’. Finally, A Bayesian approach is used to find the most probable coordinates of the building footprints, based on the ‘modified edge map’. The proposal that is made for the footprint a priori data is based on the creating a PDF which assumes that the probable footprint angle at the corner is 90o and along the edge is 180o, with a less probable value given to the other angles such as 45o and 135o. The 3D model is constructed by extracting the elevation of the buildings from the DSM and combining it with the regularized building boundary. Validation, both quantitatively and qualitatively has shown that the developed process and associated algorithms have successfully been able to extract building footprints and create 3D models
    corecore