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ABSTRACT:

Nowadays, different Digital Elevation Models (DEMs) are typically available for the same geographic area, which are provided by

different sensors and/or processing techniques. Each DEM contains measurement errors due to the acquisition technology, the atmo-

spheric conditions, the processing chain and the characteristics of the observed terrain. DEM fusion aims at overcoming the limitations

of individual DEMs by merging them in an intelligent way that exploits the available complementary information and discards the

redundancies. In this paper we present a generic algorithmic approach for fusing two arbitrary DEMs of the same geographical area,

using the framework of sparse representations. A signal is called sparse when most or all of its information can be captured by a linear

combination of a few elementary signals, also known as atoms. The atoms are chosen from a dictionary, i.e. an over-complete basis

set, from which only a small subset is required to effectively represent each actual signal. We provide experimental results on real

elevation datasets from different earth observation satellites to validate the proposed approach. Our evaluation shows that the proposed

algorithm, along with carefully chosen fusion weights, yields consistently better DEMs.

1 INTRODUCTION

1.1 Motivation and Aims

Digital Elevations Models (DEMs) are one of the most important

types of geodata. They are needed in a large number of applica-

tions, ranging from virtual globes and visualization to engineer-

ing and environmental planning. DEMs of larger areas are usu-

ally generated either by photogrammetric processing of aerial and

satellite images, SAR (Synthetic Aperture Radar) interferometry,

or laser scanning (mainly from airborne platforms). Each sens-

ing technology has its own strengths and weaknesses, and even

within one technology the variations in DEM quality are large

(as an example, consider the characteristics of image matching

algorithms). DEMs are available at different scales from tailor-

made local models to national and even global coverage. We are

primarily interested in large-scale national and global products,

whose resolution, accuracy, error characteristics, and homogene-

ity vary a lot. In most cases, the DEM producers provide users

with information only on production technology, date of acquisi-

tion, and resolution, but only with coarse accuracy measures that

fail to capture the local variations in data quality – sometimes

only a single global number.

In an ideal world, one would of course obtain the raw measure-

ments and sensor models from all sensors, and merge them by

fitting a single DEM to the entire set of heterogeneous observa-

tions, along the way computing quality measures for every single

height value. Unfortunately, this is usually not feasible in prac-

tice. Thus, one resorts to the next best solution, namely to fuse

DEMs from different providers into a higher-quality product, and

estimate its quality in the process from the available redundancy.

DEM fusion – and its necessary prerequisite, fine-grained quality

characterization of the inputs – has several benefits: improved

accuracy, homogeneity and completeness, as well as fine-grained

quality information for the final product. We deal only with2 1
2
-D

surfaces in regular grid format, which constitute the vast majority

of large-scale DEMs (although our framwork could in principle

be extended to TINs).

In this work we make two contributions:

• we develop a computationally efficient and flexible mathe-

matical method for robust fusion of 2 1
2
-D surface models.

The formulation is generic and can be applied with any two

input DEMs, independent of the sensor technology and pro-

cessing with which they were created, making it useful for

practical applications; it takes into account both prior in-

formation about plausible terrain shapes (in the form of a

dictionary), and the local accuracy of the inputs, controled

by interpretable weights; and it poses the complete fusion as

a clean, convex mathematical optimisation problem that can

be solved to global optimality, and in which the influence of

the input DEMs is controlled by an interpretable set of local

fusion weights.

• we propose a data-driven method, which allows one to de-

rive local measures of DEM quality (and thus also fusion

weights) for each point or segment of a DEM, if no such in-

formation is available. To this end we use as input geomor-

phological characteristics of the terrain (slope, roughness)

which are derived directly from the DEMs, as well as op-

tionally semantic information such as land-cover maps. Us-

ing existing high-quality ground-truth DEMs as reference,

we learn regression functions relating the available geomor-

phological characteristics to the DEM quality, which then

allow one to estimate the local quality of a new DEM.

The proposed method is evaluated in detail with three different

satellite datasets, and shows a significant improvement in DEM

quality, consistently over all combinations of inputs.

1.2 Related Work

Surprisingly, there is a relatively small body of work about data

fusion for combining DEMs. Schultz et al. (1999) developed a

methodology to fuse two stereo-optical DEMs. The techniques

discussed in this paper are based on the concept of using self-

consistency to identify potentially unreliable points. Honikel (1999)



applies two techniques which take advantage of the complemen-

tary properties of InSAR and stereo-optical DEMs. First, the

cross-correlation of phases, respectively the gray values, are de-

termined for each DEM point and used as fusion weights. The

second technique takes advantage of the fact that errors of the

DEMs are of different nature, and attempts to find regions where

each DEM is less correct than the other, and to replace the data

with the one from the more correct counterpart. In Damon (2002)

and Gamba et al. (2003) the specific combination of InSAR and

LIDAR data is considered. Roth et al. (2002) describe a technique

to combine multi-source DEMs which is based on the concept of

height error maps. The pre-condition is the availability of a height

error description and the fusion is done by a weighted averag-

ing. Slatton et al. (2002) combined space-borne InSAR data from

the ERS-1/2 platforms with multiple sets of airborne C-band In-

SAR data using a multi-scale Kalman smoothing approach. Rao

et al. (2003) fill holes in an InSAR DEMwith height data derived

with stereo optical matching. Kääb (2005) combined SRTM and

ASTER DEMs to fill the gaps of SRTM, and then used the re-

sulting DEM to derive glacier flow in the mountains of Bhutan.

Podobnikar (2005) introduces a fusion technique based on the

weighted sum of data sources with geomorphological enhance-

ment. A DEM is modelled through the averaging of individual

datasets but considering their quality. The main step of geomor-

phological enhancement is the generation of trend surfaces as low

frequency functions.

2 MATHEMATICAL FORMULATION OF FUSION

We describe now the problem statement. Consider two noisy

measurements yl and yh of a height field x, possibly at differ-
ent resolutions, e.g. low and high respectively. We assume that

the measurements have been produced from x by the following
model,

yh = x+ εh and yl = Lx+ εl, (1)

where εh, εl are noise vectors and L is an unknown downsam-
pling operator. In case the two measurements yl and yh are at
the same resolution the operator L equals to 1. The problem ad-
dressed in this paper is to fuse the noisy measurements yl and
yh in order to recover the original DEM x. The hope is that
the redundancy of the measurements will offer robustness against

noise and result in an accurate estimation of x. The problem, as
stated above, can be seen as a denoising problem – in the case of

different resolutions, with simultaneous super-resolution for the

coarser signal.

Problem formulation. In order to achieve robustness without

oversmoothing, we pose the fusion problem in the framework of

sparse representations. Sparse representations have resulted in

state-of-the-art performance in image denoising Elad and Aharon

(2006) and super-resolution problems Yang et al. (2008) and, to

our knowledge, their potential has not been fully exploited in re-

mote sensing problems. We work with local DEM patches for

computational efficiency, and to ensure a moderately sized dic-

tionary able to capture the variations in terrain shape. In what

follows, yh, yl and x thus denote local patches in the correspond-
ing terrain models in (1).

We assume that x can be represented as a sparse linear combina-
tion of elements from a dictionary D (i.e. local terrain shapes).

The dictionary is a basis set spanning the signal space and is

typically overcomplete i.e. contains more elements than the di-

mension of the signal space. The elements of the dictionary are

called atoms. When x is sparsely represented over D it means

that x = Dα0, where α0 ∈ R
N is a sparse coefficient vector

whose most of the entries are zero and very few entries are non-

zero (Figure 1). N denotes the size of the dictionary whose atoms

are organized as columns of D. The sparsity of α0 implies that

only a few atoms are sufficient towards obtaining a good approxi-

mation of x thanks to the overcompleteness of the dictionary. Un-
der this representation, the generative model (1) can be re-written

as

yh = D
|{z}

:=Dh

α0 + εh and yl = LD
|{z}

:=Dl

α0 + εl, (2)

where we have further defined a high-resolution dictionary Dh

and a low-resolution dictionary Dl, which is coupled with Dh

via the relation Dl := LDh. The key observation in (2) is that

the same sparse coefficient vector α0 is involved in both mea-

sured DEMs yh and yl. This leads to the following optimisation
problem in order to recover x from the measured yl, yr.

Optimization problem. Assume for a moment thatDh andDl

are available. We postpone the discussion of how we determine

these two dictionaries until the end of this section. Given the

two dictionaries Dh and Dl and the measurements yl and yh,
we would like to recover the sparse coefficient vector α0. Once

α0 has been computed, one can simply recover x by computing
Dhα0.

min
α∈RN

‖Dlα− yl‖22
| {z }

low resolution

+ ‖Dhα− yh‖22
| {z }

high resolution

+ τ‖α‖1
| {z }

sparsity term

(3)

The first two (data) terms correspond to the reconstruction error

with respect to the observed DEMs yl and yh. The third (reg-
ularisation) term is associated with the $1 norm of the candidate
solution vector α. It is well known that the minimization of the $1

norm encourages a sparse solution1 (see, e.g., Tibshirani (1996)).

Since the true coefficient vector α0 that we seek to recover is

sparse, we would like our estimated solution α to be sparse as
well. The parameter τ > 0 controls the trade-off between data
fitting and sparsity. Its choice is discussed in Sec. 3.2.

The formulation (3) in its current form implicitly assumes that

both data terms have the same importance. However, this is not

typically the case with DEMs, since the two inputs have, at each

point, different accuracy, depending on the sensing technology

and processing. It is therefore beneficial to include weights in

the problem formulation that will reflect such prior knowledge.

We therefore modify the optimization to include such weights

wl, wh:

min
α∈RN

‖
√
wl % (Dlα− yl)‖22 + ‖

√
wh % (Dhα− yh)‖22 + τ‖α‖1 (4)

In the above,% denotes component-wise multiplication, which is

more flexible since it allows for individual weights at each loca-

tion. Section 3.1 discusses the choice of these weights, which are

crucial for a good fusion.

Consistency among neighbouring patches. Solving (4) for each

patch independently would result in blocking artifacts along the

patch borders. To remedy this problem we introduce overlap

between patches and impose consistency between neighbouring

patches. More specifically, let P denote an operator that extracts

the overlap region between the current working patch and the

patches that have been computed before. Furthermore let yp de-
note a vector that collects the values of the estimated DEM in

the overlap region. Minimizing the discrepancy ‖PDhα− yp‖22
between overlapping patches will impose consistency and ensure

1In fact it is the basis of the sparse representation framework that the

computationally inconvenient number of non-zero elements (!0-norm)

can be replaced by the !1 norm.



smooth transitions. Introducing this term into (4), we reach the

final formulation of our optimization problem:

min
α∈RN

‖
√
wl % (Dlα− yl)‖22 + ‖

√
wh % (Dhα− yh)‖22

+β‖PDhα− yp‖22 + τ‖α‖1, (5)

where we have introduced β > 0 to control the influence of the
patch overlap factor. We discuss its choice in Sec. 3.2.

Equation (5) can be written in the following form:

min
α∈RN

‖D̃α− ỹ‖22 + τ‖α‖1, where

D̃ =

2

4

√
wl %Dl√
wh %Dh√
βPDh

3

5 and ỹ =

2

4

√
wl % yl√
wh % yh√
βyp

3

5 .
(6)

Problem (6) is a convex $1-regularized least-squares problem that
can be solved to global optimality. Optimization problems of

this form constitute the main computational kernel of compressed

sensing applications. Thus, there exists a wide selection of al-

gorithms for their solution. Here, we use Orthogonal Matching

Pursuit (OMP) Mallat (1998), because of its simplicity and com-

putational efficiency. Problem (6) is solved for each patch with

OMP. Due to lack of space we omit details on OMP and refer

the interested reader to the original publication. The OMP code

reproducing the results in this paper is available for download

at Elad (2011). Details concerning the processing time are dis-

cussed in 4.

Dictionary construction. The proposed framework requires dic-

tionaries Dh, Dl, which must somehow be learned from training

data. Different learning techniques could be used to obtain a set

of atoms from available high-quality DEMs. We have tried dif-

ferent methods, and found that the best results are obtained by

simple random sampling of patches from high resolution DEMs,

followed by clustering to remove very similar samples. This is

similar to the approach used in Yang et al. (2008) for forming the

dictionary. Hence, for the construction of Dh we use a training

set of high resolution DEMs of high quality (that are of course

different from the test DEMs used in the evaluation). IfDl is of

lower resolution, its atoms are obtained by downsampling the cor-

responding atoms in Dh with bi-cubic interpolation. The prepa-

ration of the dictionaries is off-line and needs to be done only

once. Our empirical results in Section 4 demonstrate that the dic-

tionaries constructed with the above procedure are well suited for

successfully representing real terrain patches using very few (less

than ten) atoms.

(a)

=

a0

(b)

+a1

(c)

+a2

(d)

Figure 1: Reconstruction of a 9×9 patch (a) from three non-zero
atoms (b)-(d), where [a0, a1, a2] is the sparse non-zero coeffi-
cient vector.

3 DEM QUALITY ANDWEIGHTS

The DEM fusion method used in this research consists primarily

of two steps: quality evaluation and fusion. It is assumed that the

input DEMs are co-registered into the same coordinate system.

The co-registration operates by minimizing the 3D separations

between a template (master) DEM and a second search (slave)

DEM i.e. Gruen and Akca (2005). After co-registration the low

resolution DEM is resampled to the nodes of the high resolution

DEM by bicubic interpolation.

3.1 Fusion Weights

The fusion is accomplished with the support of weight maps,

which reflect the estimated relative accuracy of the two DEMs

at every single grid point. In some cases DEM providers deliver

such error maps, which then can be directly used for fusion. How-

ever, in most cases these maps are not available or not reliable.

Then, the weights need to be estimated from the data.

We have explored a data-driven strategy to find the weights based

on geomorphological characteristics. Geometric properties of the

terrain can be derived directly from a given DEM with local char-

acteristics such as slope, aspect, roughness, curvature, etc. We

calculate two such parameters, slope and roughness, and analyze

their relation to the co-registration residuals.

The slope is extracted using Horn’s formula Horn (1981) to find

the first order derivatives in x and y direction. Roughness refers
to the height viariation within a local neighborhood, and can be

measured in different ways, e.g. by the standard deviation or frac-

tal dimension. We have experimented with several methods and

have found the entropy to perform best for our purposes. The En-

tropy E(x, y) is defined as E(x, y) =
P

(p × log p), where p
are the probability densities of the heights, approximated by his-

togram counts. Each output grid cell contains the entropy value of

the surrounding n×n neighborhood. We point out that the resid-
uals vary (increase or decrease) in a non-random pattern with the

two extracted geomorphological parameters. We learn the map-

ping from a parameter to the expected residual (accuracy) with

Gaussian Process regression. An example is shown in Figure 3.

After the mapping, we adjust the expected residuals by linearly

scaling the values between 0 and 100. The result is an accuracy
map. In the last step, we normalize the resulting accuracy maps

of both input DEMs at each overlapping point. The inverse values

are the weights used for the fusion.

3.2 Fusion of DEMs

The fused DEM covers the common area available in all given

DEMs. After merging, a single DEM exists with the same grid

spacing as the DEM with the smallest grid spacing.

According to the mathematical formulation of the fusion algo-

rithm described in Section 2 we have to set the overlapping pa-

rameter β, the number of the non-zero atoms used in OMP, the
patch size and the number of patches in the dictionary. In order

to fine tune these parameters we performed numerous tests using

artificial and real world datasets and we compared each time the

produced results with available high quality reference data. Best

results are achieved with the following set of parameters. The

overlap parameter β is set to the interval [0.5, 1.5]. The number
of the non-zero atoms used in OMP is set between 7 to 15. Un-
der 7 the results are not reliable and over 15 the processing time
increases while the results do not improve. The minimum patch

size should not be smaller than 3 × 3 and it should not be big-
ger than 9× 9 because then the processing window becomes too
complicated and it is more difficult to find a suitable combination

of non-zero sparse atoms to reconstruct it. A ”good‘ dictionary

should contain atoms that describe every possible geomorpholog-

ical structure, e.g. urban, forest, flat, mountainous areas, in order

that OMP can find for every patch a well fitting combination of

atoms.



4 RESULTS AND DISCUSSION

In this section we present the results of an experimental validation

of the fusion methodology, in three realistic DEM fusion exam-

ples, over a test site located at Thun, Switzerland characterized by

areas with different morphology and land cover. We used three

DEMs produced with image matching and SAR interferometry.

Figure 2 shows the area of overlap. The validation was performed

by comparing the input and the obtained DEMs after the fusion

with a high quality reference lidar DEM provided by Swisstopo.

SPOT2 Reference 3D DEM (S): 30 m grid spacing. Image ac-

quisition date: 30.09.2002. It is produced using image matching

by SpotImage. The given absolute elevation accuracy for flat or

rolling terrain (slope≤20%) is 10 m, for hilly terrain (20 % ≤
slope ≤ 40%) is 18 m and for the mountainous terrain (slope>
40%) is 30 m. The Reference 3D DEM is delivered with a High

Resolution orthoimage (SPOT 5 sensor) with 5 m ground pixel

size.

ALOS/PALSAR3 DEM (A): 15 m grid spacing. Image acquisi-
tion date: master 19.06.2006 and slave 04.08.2006. L-Band (ca.

23 cm wavelength). It is produced by Sarmap SA. The overall

accuracy is 20 m and it has been estimated using the Lidar DEM.
ERS4 DEM (E): 25mgrid spacing. Image acquisition date: mas-
ter 22.10.1995 and slave 23.10.1995. C-Band (ca. 6 cm wave-

length). It is produced by Sarmap SA. The overall accuracy is 29
m and it has been estimated using the Lidar DEM.

Lidar DEM (L): 2 m grid spacing. The airborne lidar data were
acquired for the Swisstopo in 2000 with a mean density of 1-2

points per m2, depending on the terrain, and with first and last

pulse recorded. The accuracy (1 σ) of the derived DEMs is 0.5
m and 1.5 m for vegetated areas.
The ALOS and the ERS DEMs are delivered with an accuracy

map. The values on the accuracy map are derived according to

the formula: σ = AF · (1 − coherence2)/(2 − coherence2),
where AF = R · (sin(θ)/(Bn · 4π/λ)), R is the range, θ is the
local incidence angle, Bn is the baseline normal component and

λ is the wavelength. According to our experience these accuracy
maps do not always depict the real quality of the DEMs. We

tested the fusion method by fusing (a) the ALOS with the SPOT

DEM which results to a final F1 DEM, and (b) the ERS with the

SPOT DEM which results to a final F2 DEM and (c) the ALOS

with the ERS DEM which results to a final F3 DEM.

The three DEMs (S, A, and E) were co-registered to the refer-

ence DEM (L). Table 1 shows the results of the co-registration.

A dictionary of 800 patches of size 9× 9 was generated with el-
ements drawn randomly from the lidar DEM. The dictionary was

filtered using K-means clustering algorithm with an eulidean dis-

tance measure of 10 m. The clustering reduced the dictionary to
720 patches. In all the fusion examples that we describe below

we set the overlap parameter β to 1, the number of the non-zeros
atoms used in OMP was set to 10 and we used a 9 × 9 patch
size processing window. After the fusion, error maps were com-

Master Slave σ0 Tx Ty Tz
L A 13.4 18.6 6.4 1.0

L E 18.8 -6.7 20.0 1.7

L S 8.9 16.6 3.2 2.9

Table 1: Co-registration results. σ0 is the σ a posteriori, and Tx,
Ty, and Tz are the three translations. All units are in meters.

puted by subtracting the individual DEMs (input and output) from

the reference DEM (L) and several statistics measures were com-

puted. For this reason, a grid was generated for all the DEMs at

2Système Pour l’Observation de la Terre
3Advanced Land Observing Satellite/Phased Array type L-band

Synthetic Aperture Radar
4European Remote-sensing Satellite

2 m intervals according to the spatial resolution of the reference
DEM. The statistics included in all the tables that follow are (a)

the mean value (MEAN), (b) the root mean square error (RMSE)

and (c) the mean absolute deviation of the median value (MAD).

All units are in meters. At the end, we performed a more de-

tailed analysis of the results in relation to the slope, roughness,

and land cover. The slope and the roughness classes were ob-

tained by processing the lidar DEM. For the calculations we used

a 5 × 5 pixel window. The three slope classes are: Slope≤15°,
15°<Slope≤45°, Slope>45°. The three roughness classes are:
Roughness≤10, 10<Roughness≤30, Roughness>30. The rough-
ness is scaled in the interval [0, 100]. For the land cover analysis
we selected different patches of (a) forest (15491 cells, 3.5 km2),

(b) urban (5015 cells, 1.1 km2), and (c) flat fields (29507 cells,

6.6 km2) areas using the SPOT orthoimage. The cells correspond

to a grid of 15× 15 m size.

All the tests are done using a computer with Intel Core i7, Q720,

1.6 GHz CPU and 8 GB RAM using only one core, and unopti-

mized Matlab code.

(a) ALOS DEM (b) SPOT Orthoimage

Figure 2: Overlap area.

4.1 Fusion ALOS-SPOT

A grid was generated for the input DEMs at 15 m intervals ac-

cording to the spatial resolution of the ALOS DEM. After the

resampling, the input DEMs have a 800 × 1167 grid size. The
processing time required for the fusion was 3.8 minutes. The
weights for the ALOS DEM are calculated using the given accu-

racy map. In order to create a weight map for the SPOT DEM we

used the information that is given from SpotImage relating the

accuracy of the DEM with the slope (Figure3(a)).
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Figure 3: (a) Absolute elevation accuracy versus slope (mean ev-

ery degree) for the SPOT DEM. (b) Absolute Z differences be-

tween the ERS and the SPOT DEM versus slope (mean every

degree). The blue line are the original values. The red line is a

process regression that we fit to the original values weighted with

the corresponding roughness values.

In Table 2, we can see that compared to the ALOS DEM, the fu-

sion achieved up to 35% improvement in RMSE while maintain-

ing the resolution of 15m. Similarly, as compared to the SPOT
DEM, the fusion improved the resolution to 15m from 30m while
improving the RMSE by 19%. Figure 4 shows a detail of the Z

difference images of the three DEMs. The error of the ALOS

DEM is not introduced into the final DEM F1 which supports the

choice of the weights.



ALOS-SPOT

MEAN RMSE MAD

L-A -1.1 19.7 11.5

L-S -1.6 15.7 7.9

L-F1 -1.2 12.8 7.3

Table 2: Statistical results of the ALOS-SPOT fusion for the com-

plete area.
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Figure 4: ALOS-SPOT fusion example. (a) Residuals between

the L and A DEM, (b) Residuals between the L and S DEM, (c)

Residuals between the L and F1 DEM. (d) SPOT orthoimage.

The colored Z residuals are mapped in the interval [-30,30]. The

bar unit is meters.

The results of the slope, roughness and land cover assessment are

presented in the Table 3. We notice that the fusion leads to an

improvement especially for medium and high slopes and less for

low slopes. The same behavior applies to the three roughness

classes but to a lesser degree than for the slope. Regarding de-

pendence on the land cover we do not see an improvement after

fusion for any of the three classes examined but these results are

preliminary and non conclusive.

Slope
S≤15°, 45.3% 15°<S≤45°, 29.8% S>45°, 24.9%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -1.8 10.8 6.1 0.1 20.4 13.3 -0.8 28.5 18.7

L-S -0.8 6.2 3.8 -1.9 17.8 9.4 -2.7 23.6 13.5

L-F1 -0.8 5.5 3.7 -1.4 13.5 8.3 -1.8 19.6 12.7

Rough.
R≤10, 41.8% 10<R≤30, 36.4% R>30, 21.8%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -1.7 10.4 6.0 0.5 18.2 11.7 -2.0 31.3 21.3

L-S -0.7 6.2 3.7 -1.2 15.2 7.9 -4.1 26.3 15.9

L-F1 -0.6 5.0 3.5 -0.9 11.5 7.1 -3.0 21.9 14.9

Land

Cover

Fields, 29507 cells Forest, 15491 cells Urban, 5015 cells

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -2.1 14.9 8.4 -8.1 31.1 21.6 2.8 5.8 4.0

L-S -0.8 3.4 2.4 -1.8 10.7 8.1 0.1 4.5 3.5

L-F1 -0.8 3.4 2.3 -2.3 11.2 8.4 0.1 4.4 3.5

Table 3: ALOS-SPOT fusion. Slope, roughness and land cover

classes analysis.

4.2 Fusion ERS-SPOT

A grid was generated for the input DEMs at 25 m intervals ac-

cording to the spatial resolution of ERS. After the resampling,

the input DEMs have a 480× 700 grid size. The processing time
required for the fusion was 1.3 minutes. The weights for the ERS
DEM are calculated using the given accuracy map. For the calcu-

lation of the weights of the SPOT DEM a fairly good relationship

was found between the height differences map of the two input

DEMs and the slope. In Figure 3(b) the used weighting func-

tion is shown. It is a 6th degree polynomial function that we fit

to the original values weighted with the corresponding roughness

values. We used a different approach for the calculation of the

weights than in ALOS-SPOT fusion because we found out that

for the case of ERS-SPOT fusion the last approach gives slightly

better results.

In Table 4, we can see that as compared to the ERS DEM, the

technique achieved up to 52% improvement in RMSEwhile main-

taining the resolution of 25m. Similarly, as compared to the

SPOT DEM, the technique improved the resolution to 25m from
30m while improving the RMSE by 11%. Figure 5 shows a detail
of the Z difference images of the three DEMs. The errors of the

ERS DEM are not introduced into the final DEM F2.

The results of the slope, roughness and land cover assessment are

presented in the Table 5. The analysis of these results conforms

ERS-SPOT

MEAN RMSE MAD

L-E -0.8 29.3 13.3

L-S -1.6 15.7 7.9

L-F2 -1.2 14.3 7.9

Table 4: Statistical results of the ERS-SPOT fusion for the com-

plete area.
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Figure 5: ERS-SPOT fusion example. (a) Residuals between the

L and E DEM, (b) Residuals between the L and S DEM, (c)

Residuals between the L and F2 DEM. (d) SPOT Orthoimage.

The colored Z residuals are mapped in the interval [-30,30]. The

bar unit is meters.

to the analysis for ALOS-SPOT fusion. Here the imrpovement by

fusion is larger for medium and high slopes and roughness than

for low ones.

Slope
S≤15°, 45.3% 15°<S≤45°, 29.8% S>45°, 24.9%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-E -2.3 12.0 4.2 -1.6 32.7 17.5 2.2 41.0 22.1

L-S -0.8 6.2 3.8 -1.9 17.8 9.3 -2.7 23.6 13.5

L-F2 -1.1 5.8 3.5 -1.4 16.6 10.0 -1.0 20.7 13.2

Rough.
R≤10, 41.8% 10<R≤30, 36.4% R>30, 21.8%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-E -2.2 11.4 4.0 -1.3 28.5 14.5 1.9 45.5 26.1

L-S -0.7 6.2 3.7 -1.2 15.2 7.9 -4.1 26.3 15.9

L-F2 -0.9 5.5 3.4 -0.9 14.4 8.4 -2.1 23.1 15.5

Land

Cover

Fields, 29507 cells Forest, 15491 cells Urban, 5015 cells

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-E -0.9 4.9 3.1 0.3 13.3 10.3 -0.3 4.3 3.4

L-S -0.8 3.4 2.4 -1.8 10.7 8.1 0.1 4.5 3.5

L-F2 -0.8 3.1 2.1 -1.6 10.8 8.3 -0.1 4.2 3.3

Table 5: ERS-SPOT fusion. Slope, roughness and land cover

classes analysis.

4.3 Fusion ALOS-ERS

A grid was generated for the input DEMs at 15 m intervals ac-

cording to the spatial resolution of the ALOS DEM. After the

resampling, the input DEMs have a 800 × 1167 grid size. The
processing time required for the fusion was 3.8 minutes. The
weights are calculated using the given accuracy maps, given the

fact that the weights are inversely proportional to the standard de-

viation values. The values of the accuracy maps are rescaled to

the interval [0, 1]. In Table 6, we can see that as compared to
the ALOS DEM, the technique achieved up to 4% improvement

in RMSE while maintaining the resolution of 15m. Similarly,
as compared to the ERS DEM, the technique improved the res-

olution to 15m from 25m while improving the RMSE by 36%.

Figure 6 shows a detail of the Z difference images of the three

DEMs. In the ALOS DEM a large blunder exists which does not

appear in the ALOS accuracy map, so this blunder is introduced

into the final result F3.

The results of the slope, roughness and land cover assessment are

presented in the Table 7. For ALOS and forest areas the large

negative indicates that the ALOS DEM is systematically higher

than the lidar one. Since L-band penetrates the tree canopy the

mean should be large but positive. This cannot be explained ex-

cept by destruction or cutting of trees between 2000 and 2006.

Here for medium and large slopes / roughness there is no im-

rpovement by fusion while for low values the improvement is

significant. Regarding land cover we see a deteroriation by fu-

sion at forest areas. This is expected due to very different canopy

penetration of the C- and L- bands.



ALOS-ERS

MEAN RMSE MAD

L-A -1.1 19.7 11.5

L-E -0.8 29.3 13.3

L-F3 -0.7 18.9 10.1

Table 6: Statistical results of the ALOS-ERS fusion for the com-

plete area.
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Figure 6: ALOS-ERS fusion example. (a) Residuals between

the L and A DEM, (b) Residuals between the L and E DEM, (c)

Residuals between the L and F3 DEM. (d) SPOT orthoimage.

The colored Z residuals are mapped in the interval [-30,30]. The

bar unit is meters.

Slope
S≤15°, 45.3% 15°<S≤45°, 29.8% S>45°, 24.9%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -1.8 10.8 6.1 0.1 20.4 13.3 -0.8 28.5 18.7

L-E -2.3 12.0 4.2 -1.6 32.7 17.5 2.2 41.0 22.1

L-F3 -1.9 8.2 3.8 -0.2 21.0 12.9 0.9 28.0 17.4

Rough.
R≤10, 41.8% 10<R≤30, 36.4% R>30, 21.8%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -1.7 10.4 6.0 0.5 18.2 11.7 -2.0 31.3 21.3

L-E -2.2 11.4 4.0 -1.3 28.5 14.5 1.9 45.5 26.1

L-F3 -1.7 7.6 3.6 0.0 18.4 11.0 0.2 31.0 20.3

Land

Cover

Fields, 29507 cells Forest, 15491 cells Urban, 5015 cells

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -2.1 14.9 8.4 -8.1 31.1 21.6 2.8 5.8 4.0

L-E -0.9 4.9 3.1 0.3 13.3 10.3 -0.3 4.3 3.4

L-F3 -1.0 5.1 3.5 -3.8 18.6 13.5 0.9 4.3 3.3

Table 7: ALOS-ERS fusion. Slope, roughness and land cover

classes analysis.

5 CONCLUSIONS AND FUTUREWORK

We have proposed amethodology for DEM fusion based on sparse

representations. First, we have introduced a mathematical frame-

work for the fusion. Next, we have proposed a way to calculate

the weight maps for the input DEMs when no prior information

is available. We provide ample experimental evidence using real

DEMs that indicates the advantages of the proposed approach af-

ter the examination of the post-fusion DEMs. Strategies that take

advantage of some complementary factors like the edginess, the

land cover or the special attributes of the DEMs production tech-

nology are likeley to be realized in the near future for the calcu-

lation of the weight maps.
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Roth, A., Knöpfle, W., Strunz, G., Lehner, M. and Reinartz, P.,
2002. Towards a global elevation product: combination of
multi-source digital elevation models. In: Joint International
Symposium on Geospatial Theory, Processing and Applica-
tions.

Schultz, H., Riseman, E. M., Stolle, F. R. and Woo, D.-M., 1999.
Error detection and DEM fusion using self-consistency. In:
International Conference on Computer Vision.

Slatton, K., Teng, S. and Crawford, M., 2002. Multiscale fusion
of InSAR data for hydrological applications. In: Symposium
on Terrain Analysis for Water Resources Applications.

Tibshirani, R., 1996. Regression shrinkage and selection via the
lasso. J. Royal. Statist. Soc B. 58(1), pp. 267–288.

Yang, J., Wright, J., Huang, T. S. and Ma, Y., 2008. Image super-
resolution as sparse representation of raw image patches. In:
IEEE Conf. on Computer Vision and Pattern Recognition.



Research Reports

No. Authors/Title

11-26 H. Papasaika, E. Kokiopoulou, E. Baltsavias, K. Schindler and
D. Kressner
Sparsity-seeking fusion of digital elevation models

11-25 H. Harbrecht and J. Li
A fast deterministic method for stochastic elliptic interface problems
based on low-rank approximation

11-24 R. Andreev
Sparse space-time finite element discretization of parabolic equations

11-23 P. Corti and S. Mishra
Stable finite difference schemes for the magnetic induction equation with
Hall effect

11-22 H. Kumar and S. Mishra
Entropy stable numerical schemes for two-fluid MHD equations

11-21 H. Heumann, R. Hiptmair, K. Li and J. Xu
Semi-Lagrangian methods for advection of differential forms

11-20 A. Moiola
Plane wave approximation in linear elasticity

11-19 C.J. Gittelson
Uniformly convergent adaptive methods for parametric operator
equations

11-18 E. Kokiopoulou, D. Kressner, M. Zervos and N. Paragios
Optimal similarity registration of volumetric images

11-17 D. Marazzina, O. Reichmann and Ch. Schwab
hp-DGFEM for Kolmogorov-Fokker-Planck equations of multivariate
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