100,436 research outputs found

    An Online Distributed Boundary Detection and Classiļ¬cation Algorithm for Mobile Sensor Networks

    Get PDF
    We present a novel online distributed boundaryĀ detection and classiļ¬cation algorithm in order to improveĀ accuracy of boundary detection and classiļ¬cation for mobileĀ sensor networks. This algorithm is developed by incorporating aĀ boundary detection algorithm and our newly proposed boundaryĀ error correction algorithm. It is a fully distributed algorithmĀ based on the geometric approach allowing to remove boundaryĀ errors without recursive process and global synchronization.Ā Moreover, the algorithm allows mobile nodes to identify theirĀ states corresponding to their positions in network topologies,Ā leading to self-classiļ¬cation of interior and exterior boundariesĀ of network topologies. We have demonstrated effectiveness ofthis algorithm in both simulation and real-world experimentsĀ and proved that the accuracy of the ratio of correctly identiļ¬edĀ nodes over the total number of nodes is 100%

    Overviews of Optimization Techniques for Geometric Estimation

    Get PDF
    We summarize techniques for optimal geometric estimation from noisy observations for computer vision applications. We first discuss the interpretation of optimality and point out that geometric estimation is different from the standard statistical estimation. We also describe our noise modeling and a theoretical accuracy limit called the KCR lower bound. Then, we formulate estimation techniques based on minimization of a given cost function: least squares (LS), maximum likelihood (ML), which includes reprojection error minimization as a special case, and Sampson error minimization. We describe bundle adjustment and the FNS scheme for numerically solving them and the hyperaccurate correction that improves the accuracy of ML. Next, we formulate estimation techniques not based on minimization of any cost function: iterative reweight, renormalization, and hyper-renormalization. Finally, we show numerical examples to demonstrate that hyper-renormalization has higher accuracy than ML, which has widely been regarded as the most accurate method of all. We conclude that hyper-renormalization is robust to noise and currently is the best method

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Results of precision processing (scene correction) of ERTS-1 images using digital image processing techniques

    Get PDF
    ERTS-1 MSS and RBV data recorded on computer compatible tapes have been analyzed and processed, and preliminary results have been obtained. No degradation of intensity (radiance) information occurred in implementing the geometric correction. The quality and resolution of the digitally processed images are very good, due primarily to the fact that the number of film generations and conversions is reduced to a minimum. Processing times of digitally processed images are about equivalent to the NDPF electro-optical processor
    • ā€¦
    corecore