3,567 research outputs found

    Postprocessing for quantum random number generators: entropy evaluation and randomness extraction

    Full text link
    Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor and Trevisan's extractor.Comment: 13 pages, 2 figure

    Entanglement-assisted quantum turbo codes

    Get PDF
    An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin et al., in order to have the constituent decoders pass along only "extrinsic information" to each other rather than a posteriori probabilities as in the decoder of Poulin et al., and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.Comment: 31 pages, software for simulating EA turbo codes is available at http://code.google.com/p/ea-turbo/ and a presentation is available at http://markwilde.com/publications/10-10-EA-Turbo.ppt ; v2, revisions based on feedback from journal; v3, modification of the quantum turbo decoding algorithm that leads to improved performance over results in v2 and the results of Poulin et al. in arXiv:0712.288

    Interactive Channel Capacity Revisited

    Full text link
    We provide the first capacity approaching coding schemes that robustly simulate any interactive protocol over an adversarial channel that corrupts any ϵ\epsilon fraction of the transmitted symbols. Our coding schemes achieve a communication rate of 1O(ϵloglog1/ϵ)1 - O(\sqrt{\epsilon \log \log 1/\epsilon}) over any adversarial channel. This can be improved to 1O(ϵ)1 - O(\sqrt{\epsilon}) for random, oblivious, and computationally bounded channels, or if parties have shared randomness unknown to the channel. Surprisingly, these rates exceed the 1Ω(H(ϵ))=1Ω(ϵlog1/ϵ)1 - \Omega(\sqrt{H(\epsilon)}) = 1 - \Omega(\sqrt{\epsilon \log 1/\epsilon}) interactive channel capacity bound which [Kol and Raz; STOC'13] recently proved for random errors. We conjecture 1Θ(ϵloglog1/ϵ)1 - \Theta(\sqrt{\epsilon \log \log 1/\epsilon}) and 1Θ(ϵ)1 - \Theta(\sqrt{\epsilon}) to be the optimal rates for their respective settings and therefore to capture the interactive channel capacity for random and adversarial errors. In addition to being very communication efficient, our randomized coding schemes have multiple other advantages. They are computationally efficient, extremely natural, and significantly simpler than prior (non-capacity approaching) schemes. In particular, our protocols do not employ any coding but allow the original protocol to be performed as-is, interspersed only by short exchanges of hash values. When hash values do not match, the parties backtrack. Our approach is, as we feel, by far the simplest and most natural explanation for why and how robust interactive communication in a noisy environment is possible

    Commitment and Oblivious Transfer in the Bounded Storage Model with Errors

    Get PDF
    The bounded storage model restricts the memory of an adversary in a cryptographic protocol, rather than restricting its computational power, making information theoretically secure protocols feasible. We present the first protocols for commitment and oblivious transfer in the bounded storage model with errors, i.e., the model where the public random sources available to the two parties are not exactly the same, but instead are only required to have a small Hamming distance between themselves. Commitment and oblivious transfer protocols were known previously only for the error-free variant of the bounded storage model, which is harder to realize
    corecore