163,052 research outputs found

    Systematic redundant residue number system codes: analytical upper bound and iterative decoding performance over AWGN and Rayleigh channels

    No full text
    The novel family of redundant residue number system (RRNS) codes is studied. RRNS codes constitute maximum–minimum distance block codes, exhibiting identical distance properties to Reed–Solomon codes. Binary to RRNS symbol-mapping methods are proposed, in order to implement both systematic and nonsystematic RRNS codes. Furthermore, the upper-bound performance of systematic RRNS codes is investigated, when maximum-likelihood (ML) soft decoding is invoked. The classic Chase algorithm achieving near-ML soft decoding is introduced for the first time for RRNS codes, in order to decrease the complexity of the ML soft decoding. Furthermore, the modified Chase algorithm is employed to accept soft inputs, as well as to provide soft outputs, assisting in the turbo decoding of RRNS codes by using the soft-input/soft-output Chase algorithm. Index Terms—Redundant residue number system (RRNS), residue number system (RNS), turbo detection

    Secure pseudo-random linear binary sequences generators based on arithmetic polynoms

    Full text link
    We present a new approach to constructing of pseudo-random binary sequences (PRS) generators for the purpose of cryptographic data protection, secured from the perpetrator's attacks, caused by generation of masses of hardware errors and faults. The new method is based on use of linear polynomial arithmetic for the realization of systems of boolean characteristic functions of PRS' generators. "Arithmetizatio" of systems of logic formulas has allowed to apply mathematical apparatus of residue systems for multisequencing of the process of PRS generation and organizing control of computing errors, caused by hardware faults. This has guaranteed high security of PRS generator's functioning and, consequently, security of tools for cryptographic data protection based on those PRSs

    Control-oriented implementation and model order reduction of a lithium-ion battery electrochemical model

    Get PDF
    The use of electrochemical models makes it computationally intractable for online implementation as the model is subject to a complicated mathematical structure including partial-differential equations (PDE). This paper is based on the single particle model with electrolyte dynamics. Methods to solve the PDEs in the governing equations are given. Model order reduction techniques are applied to the electrochemical model to reduce the order from 350 to 14. The models solved by numerical solution, residue grouping method and balanced truncation method are compared with experimental data of a coin cell for validation. The results show that the reduced order model can decrease simulation time 75 times compared with the high order model. And the accuracy of the model is kept with 2.3% root mean square error comparing with the experiment results

    Secure State Estimation: Optimal Guarantees against Sensor Attacks in the Presence of Noise

    Get PDF
    Motivated by the need to secure cyber-physical systems against attacks, we consider the problem of estimating the state of a noisy linear dynamical system when a subset of sensors is arbitrarily corrupted by an adversary. We propose a secure state estimation algorithm and derive (optimal) bounds on the achievable state estimation error. In addition, as a result of independent interest, we give a coding theoretic interpretation for prior work on secure state estimation against sensor attacks in a noiseless dynamical system.Comment: A shorter version of this work will appear in the proceedings of ISIT 201
    • 

    corecore