3,501 research outputs found

    Recursive Motion and Structure Estimation with Complete Error Characterization

    Get PDF
    We present an algorithm that perfom recursive estimation of ego-motion andambient structure from a stream of monocular Perspective images of a number of feature points. The algorithm is based on an Extended Kalman Filter (EKF) that integrates over time the instantaneous motion and structure measurements computed by a 2-perspective-views step. Key features of our filter are (I) global observability of the model, (2) complete on-line characterization of the uncertainty of the measurements provided by the two-views step. The filter is thus guaranteed to be well-behaved regardless of the particular motion undergone by the observel: Regions of motion space that do not allow recovery of structure (e.g. pure rotation) may be crossed while maintaining good estimates of structure and motion; whenever reliable measurements are available they are exploited. The algorithm works well for arbitrary motions with minimal smoothness assumptions and no ad hoc tuning. Simulations are presented that illustrate these characteristics

    Partial Sum Minimization of Singular Values in Robust PCA: Algorithm and Applications

    Full text link
    Robust Principal Component Analysis (RPCA) via rank minimization is a powerful tool for recovering underlying low-rank structure of clean data corrupted with sparse noise/outliers. In many low-level vision problems, not only it is known that the underlying structure of clean data is low-rank, but the exact rank of clean data is also known. Yet, when applying conventional rank minimization for those problems, the objective function is formulated in a way that does not fully utilize a priori target rank information about the problems. This observation motivates us to investigate whether there is a better alternative solution when using rank minimization. In this paper, instead of minimizing the nuclear norm, we propose to minimize the partial sum of singular values, which implicitly encourages the target rank constraint. Our experimental analyses show that, when the number of samples is deficient, our approach leads to a higher success rate than conventional rank minimization, while the solutions obtained by the two approaches are almost identical when the number of samples is more than sufficient. We apply our approach to various low-level vision problems, e.g. high dynamic range imaging, motion edge detection, photometric stereo, image alignment and recovery, and show that our results outperform those obtained by the conventional nuclear norm rank minimization method.Comment: Accepted in Transactions on Pattern Analysis and Machine Intelligence (TPAMI). To appea

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Accurate Optimization of Weighted Nuclear Norm for Non-Rigid Structure from Motion

    Get PDF
    Fitting a matrix of a given rank to data in a least squares sense can be done very effectively using 2nd order methods such as Levenberg-Marquardt by explicitly optimizing over a bilinear parameterization of the matrix. In contrast, when applying more general singular value penalties, such as weighted nuclear norm priors, direct optimization over the elements of the matrix is typically used. Due to non-differentiability of the resulting objective function, first order sub-gradient or splitting methods are predominantly used. While these offer rapid iterations it is well known that they become inefficent near the minimum due to zig-zagging and in practice one is therefore often forced to settle for an approximate solution. In this paper we show that more accurate results can in many cases be achieved with 2nd order methods. Our main result shows how to construct bilinear formulations, for a general class of regularizers including weighted nuclear norm penalties, that are provably equivalent to the original problems. With these formulations the regularizing function becomes twice differentiable and 2nd order methods can be applied. We show experimentally, on a number of structure from motion problems, that our approach outperforms state-of-the-art methods

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones

    EIT Reconstruction Algorithms: Pitfalls, Challenges and Recent Developments

    Full text link
    We review developments, issues and challenges in Electrical Impedance Tomography (EIT), for the 4th Workshop on Biomedical Applications of EIT, Manchester 2003. We focus on the necessity for three dimensional data collection and reconstruction, efficient solution of the forward problem and present and future reconstruction algorithms. We also suggest common pitfalls or ``inverse crimes'' to avoid.Comment: A review paper for the 4th Workshop on Biomedical Applications of EIT, Manchester, UK, 200

    Quantitative 3d reconstruction from scanning electron microscope images based on affine camera models

    Get PDF
    Scanning electron microscopes (SEMs) are versatile imaging devices for the micro-and nanoscale that find application in various disciplines such as the characterization of biological, mineral or mechanical specimen. Even though the specimen’s two-dimensional (2D) properties are provided by the acquired images, detailed morphological characterizations require knowledge about the three-dimensional (3D) surface structure. To overcome this limitation, a reconstruction routine is presented that allows the quantitative depth reconstruction from SEM image sequences. Based on the SEM’s imaging properties that can be well described by an affine camera, the proposed algorithms rely on the use of affine epipolar geometry, self-calibration via factorization and triangulation from dense correspondences. To yield the highest robustness and accuracy, different sub-models of the affine camera are applied to the SEM images and the obtained results are directly compared to confocal laser scanning microscope (CLSM) measurements to identify the ideal parametrization and underlying algorithms. To solve the rectification problem for stereo-pair images of an affine camera so that dense matching algorithms can be applied, existing approaches are adapted and extended to further enhance the yielded results. The evaluations of this study allow to specify the applicability of the affine camera models to SEM images and what accuracies can be expected for reconstruction routines based on self-calibration and dense matching algorithms. © MDPI AG. All rights reserved

    Dynamic Estimation of Rigid Motion from Perspective Views via Recursive Identification of Exterior Differential Systems with Parameters on a Topological Manifold

    Get PDF
    We formulate the problem of estimating the motion of a rigid object viewed under perspective projection as the identification of a dynamic model in Exterior Differential form with parameters on a topological manifold. We first describe a general method for recursive identification of nonlinear implicit systems using prediction error criteria. The parameters are allowed to move slowly on some topological (not necessarily smooth) manifold. The basic recursion is solved in two different ways: one is based on a simple extension of the traditional Kalman Filter to nonlinear and implicit measurement constraints, the other may be regarded as a generalized "Gauss-Newton" iteration, akin to traditional Recursive Prediction Error Method techniques in linear identification. A derivation of the "Implicit Extended Kalman Filter" (IEKF) is reported in the appendix. The ID framework is then applied to solving the visual motion problem: it indeed is possible to characterize it in terms of identification of an Exterior Differential System with parameters living on a C0 topological manifold, called the "essential manifold". We consider two alternative estimation paradigms. The first is in the local coordinates of the essential manifold: we estimate the state of a nonlinear implicit model on a linear space. The second is obtained by a linear update on the (linear) embedding space followed by a projection onto the essential manifold. These schemes proved successful in performing the motion estimation task, as we show in experiments on real and noisy synthetic image sequences
    corecore